Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Photomed Laser Surg ; 28 Suppl 1: S53-60, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19780630

ABSTRACT

OBJECTIVE: To evaluate the inactivation of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), responsible for causing aggressive periodontitis, using photodynamic therapy (PDT) by rose bengal (RB) as a model of a reactive oxygen species (ROS) generator, in planktonic and biofilm cultures. MATERIALS AND METHODS: A. actinomycetemcomitans was grown in planktonic and biofilm cultures using tryptic soy broth medium. The sensibility (dark toxicity) to RB was determined, and its ideal concentration for PDT was established. Concentrations in the range from 0.01 to 50.0 micromol L(-1) RB, with different light potencies and incubation times, were used. An odontological resin photopolymerizer that emits the adequate wavelength for absorption of the RB dye was applied. Bacterial viability was determined by colony- forming units (CFU). RESULTS: RB photosensitizer dye in concentrations up to 0.1 micromol L(-1) did not show toxicity per se toward A. actinomycetemcomitans cells. In a PDT study with photoirradiation (1 min) at 0.1 micromol L(-1), a 55% reduction of A. actinomycetemcomitans viability was obtained in planktonic cultures. Preincubation (30 min) of the bacteria with the dye resulted in a 90% reduction of its viability. It is important to note that, for dye concentrations up to 1 micromol L(-1), in the same experimental conditions, no death effect on gingival fibroblasts was observed. The A. actinomycetemcomitans biofilm was not affected by RB or light alone. After PDT, the reduction in the biofilm (about 45%) is significantly dependant on RB concentration and irradiation time when this dye was used as a ROS generator. CONCLUSION: Photodynamic therapy-generated ROS inactivates A. actinomycetemcomitans both in planktonic and biofilm cultures, even in small concentrations of the photosensitizing agent, and it does not cause damage to fibroblast cells under the same conditions.


Subject(s)
Aggregatibacter actinomycetemcomitans/radiation effects , Microbial Viability/drug effects , Photochemotherapy , Bacterial Proteins/analysis , Biofilms , Cells, Cultured/drug effects , Cells, Cultured/radiation effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fluorescent Dyes , Gingiva/cytology , Periodontitis/microbiology , Photosensitizing Agents , Plankton/physiology , Reactive Oxygen Species/metabolism , Rose Bengal , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL