Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Ther Massage Bodywork ; 17(1): 19-42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486840

ABSTRACT

Background: A major complication of infection with Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is the potential for Long COVID Syndrome. While the pathophysiology of Long COVID Syndrome has yet to be described, the disease presentation is characterized by long-term symptoms with debilitating effects on human health. A better understanding of Long COVID symptomology may open up new avenues for patient treatment such as massage therapy. Methods: From the PubMed database, cohort studies that examined post-infection COVID sequelae published between January 1st, 2021 and April 30th, 2021 were selected to investigate patient demographics and symptoms. A review of massage therapy literature since 2000 in conjunction with identified Long COVID symptoms was performed. Results: This systematic review identified 17 cohort studies across the world that investigated the symptomatology of patients suffering from post-COVID sequelae in multiple organ systems. We identified the pulmonary and nervous systems to be the organ systems most affected with post-COVID sequelae, with PTSD, fatigue, dyspnea, cough, sleep disturbances, loss of smell, abdominal pain, and decreased appetite as the most common symptoms reported by >20% of Long COVID patients. Massage therapy was historically found to provide benefits to patients experiencing similar symptoms to those identified in Long COVID. Conclusions: Recognizing the need for new approaches to treatment for Long COVID Syndrome, we identify massage therapy as a potential therapeutic treatment to positively impact the organ systems affected by Long COVID, especially the high-incident symptoms, and improve patient quality of life.

3.
Article in English | MEDLINE | ID: mdl-30373804

ABSTRACT

Stagnation in antimicrobial development has led to a serious threat to public health because some Acinetobacter baumannii infections have become untreatable. New therapeutics with alternative mechanisms of action to combat A. baumannii are therefore necessary to treat these infections. To this end, the virulence of A. baumannii isolates with various antimicrobial susceptibilities was assessed when the isolates were treated with miltefosine, a phospholipase C inhibitor. Phospholipase C activity is a contributor to A. baumannii virulence associated with hemolysis, cytolysis of A549 human alveolar epithelial cells, and increased mortality in the Galleria mellonella experimental infection model. While the effects on bacterial growth were variable among strains, miltefosine treatment significantly reduced both the hemolytic and cytolytic activity of all treated A. baumannii strains. Additionally, scanning electron microscopy of polarized A549 cells infected with bacteria of the A. baumannii ATCC 19606T strain or the AB5075 multidrug-resistant isolate showed a decrease in A549 cell damage with a concomitant increase in the presence of A549 surfactant upon administration of miltefosine. The therapeutic ability of miltefosine was further supported by the results of G. mellonella infections, wherein miltefosine treatment of animals infected with ATCC 19606T significantly decreased mortality. These data demonstrate that inhibition of phospholipase C activity results in the overall reduction of A. baumannii virulence in both in vitro and in vivo models, making miltefosine a viable option for the treatment of A. baumannii infections, particularly those caused by multidrug-resistant isolates.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Anti-Bacterial Agents/therapeutic use , Phosphorylcholine/analogs & derivatives , A549 Cells , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Animals , Cell Line , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Moths/microbiology , Phosphorylcholine/therapeutic use , Type C Phospholipases/antagonists & inhibitors , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL