Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Inorg Chem ; 61(49): 19678-19694, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36441526

ABSTRACT

The phase width of the copper hydroxycarbonate malachite, Cu2CO3(OH)2, upon substitution with magnesium has been studied in detail. In extension of a previous study on amorphous precursors, the introduction of a hydrothermal aging step allowed the retrieval of crystalline hydroxycarbonate samples with up to 37 atom % Mg (metal content) that are suitable candidates as precursors to Cu/MgO catalysts for CO hydrogenation. Simultaneous refinements of X-ray powder diffraction and pair distribution function (PDF) data as well as complementary spectroscopic insight (X-ray absorption and infrared spectroscopy) revealed that samples with up to 18 atom % Mg are phase-pure magnesian malachites but the magnesium content can be increased beyond this threshold when mcguinnessite (CuMgCO3(OH)2) is accepted as a side phase. In a complementary study, a continuous increase of the magnesium fraction was found during aging and the corresponding structural evolution was studied by means of PDF. These findings add significant insight into the aging chemistry of crystalline Cu,Mg hydroxycarbonates. Furthermore, both phase-pure magnesian malachite and mcguinnessite-containing samples with up to 37 atom % Mg have been examined by thermogravimetry, X-ray powder diffraction, and N2 physisorption and were found to be promising candidates for use as precursors for the preparation of Cu/MgO catalysts.


Subject(s)
Copper , Organometallic Compounds , Copper/chemistry , Magnesium/chemistry , X-Ray Diffraction , Magnesium Oxide , Spectrophotometry, Infrared
2.
ACS Appl Mater Interfaces ; 12(39): 44074-44087, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32876432

ABSTRACT

The room-temperature controlled crystallization of monodispersed ZnS nanoparticles (average size of 5 nm) doped with luminescent ions (such as Mn2+, Eu3+, Sm3+, Nd3+, and Yb3+) was achieved via a microfluidic approach. The preparation did not require any stabilizing ligands or surfactants, minimizing potential sources of impurities. The synthesized nanomaterials were characterized from a structural (XRD and XAS at lanthanide L3 edges), morphological (TEM), and compositional (XPS, ICP-MS) perspective, giving complementary information on the materials' features. In view of potential applications in the field of optical bioimaging, the optical emission properties of the doped nanoparticles were assessed, and samples showed strong luminescent properties while being less affected by self-quenching mechanisms. Furthermore, in vitro cytotoxicity experiments were conducted, showing no negative effects and evidencing the appeal of the synthesized materials for potential applications in the field of optical bioimaging.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles/chemistry , Optical Imaging , Sulfides/chemistry , Transition Elements/chemistry , Zinc Compounds/chemistry , A549 Cells , Crystallization , Humans , Luminescence , Particle Size , Surface Properties , Tumor Cells, Cultured , X-Ray Absorption Spectroscopy
3.
Phys Chem Chem Phys ; 22(20): 11713-11723, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32407426

ABSTRACT

The structural dynamics and phase transformations of an iron molybdate catalyst with excess molybdenum trioxide (Mo/Fe = 2.0) were studied during redox cycling of the catalyst using in situ multi-edge X-ray absorption spectroscopy (XAS) at the Mo K-edge (transmission mode) and Fe K-edge (fluorescence mode) in combination with X-ray diffraction (XRD). X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis showed that heating under reducing conditions with methanol up to 400 °C produced MoO2 and FeMoO4. Linear combination fitting (LCF) analysis showed that iron was reduced completely, while molybdenum remained partly oxidized (60% as Mo(vi)). Complementary in situ XRD also supported the phase transformation due to reduction of Fe2(MoO4)3 and MoO3 to FeMoO4 and MoO2. Subsequent heating under oxidative conditions from 200 to 500 °C transformed the catalyst into its initial state via Fe2O3 and extra MoO3 as intermediate phases. This underlines the segregation and iron enrichment during redox cycling. MoO3 volatilization, observed under industrial reaction conditions of a methanol and oxygen containing atmosphere, causes this segregation to be permanent. Complete regeneration could only be achieved at 500 °C, which is significantly higher than industrial reaction temperatures. Overall, multi edge in situ XAS along with complementary XRD was found to be an ideal tool for tracing the different amorphous and crystalline phases present during redox cycling of the catalyst.

4.
Microsc Microanal ; 23(3): 501-512, 2017 06.
Article in English | MEDLINE | ID: mdl-28376946

ABSTRACT

When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.

5.
J Am Chem Soc ; 136(37): 13006-15, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25105343

ABSTRACT

An in-depth understanding of the active site requires advanced operando techniques and the preparation of defined catalysts. We elucidate here the mechanism of the selective catalytic reduction of NO by NH3 (NH3-SCR) over a Fe-ZSM-5 zeolite catalyst. 1.3 wt % Fe-ZSM-5 with low nuclearity Fe sites was synthesized, tested in the SCR reaction and characterized by UV-vis, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy. Next, this defined Fe-zeolite catalyst was studied by complementary high-energy-resolution fluorescence-detected XANES (HERFD-XANES) and valence-to-core X-ray emission spectroscopy (V2C XES) under different model in situ and realistic working (operando) conditions identical to the catalyst test bench including the presence of water vapor. HERFD-XANES uncovered that the coordination (between 4 and 5), geometry (tetrahedral, partly 5-fold), and oxidation state of the Fe centers (reduced in NH3, partly in SCR mixture, slight reduction in NO) strongly changed. V2C XES supported by DFT calculations provided important insight into the chemical nature of the species adsorbed on Fe sites. The unique combination of techniques applied under realistic reaction conditions and the corresponding catalytic data unraveled the adsorption of ammonia via oxygen on the iron site. The derived reaction model supports a mechanism where adsorbed NOx reacts with ammonia coordinated to the Fe(3+) site yielding Fe(2+) whose reoxidation is slow.

6.
Phys Chem Chem Phys ; 12(10): 2288-91, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20449341

ABSTRACT

Pd/Al(2)O(3) catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic performance. The following stages were observed: (i) build-up of a temperature maximum in the first half of the catalyst bed, (ii) reduction of palladium in the end zone of the catalyst bed with a front moving toward the entrance zone, (iii) strong hot spot formation accompanied by reduction of palladium due to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation.


Subject(s)
Aluminum Oxide/chemistry , Methane/chemistry , Palladium/chemistry , Temperature , Catalysis , Molecular Structure , Oscillometry , Oxidation-Reduction
7.
Phys Chem Chem Phys ; 12(20): 5307-16, 2010.
Article in English | MEDLINE | ID: mdl-21491655

ABSTRACT

Modification of 5 wt% Pt/Al(2)O(3) by Bi (0.9 wt%) affords a drastic improvement of catalytic activity in the liquid phase aerobic oxidation of benzyl alcohol. The nature of the solvent employed, cyclohexane or toluene, seems to influence the catalytic activity as well. We have investigated the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic activity of the metallic Pt sites for a longer period of time. Interestingly, toluene contrary to cyclohexane reduced Pt to a large extent. The freshly reduced noble metal sites seem to directly interact with the solvent, inducing an immediate poisoning of the material and limiting its performance. This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur also on sites other than the (111) terraces.


Subject(s)
Benzyl Alcohol/chemistry , Bismuth/chemistry , Platinum/chemistry , Solvents/chemistry , Aluminum Oxide/chemistry , Catalysis , Oxidation-Reduction , Spectrophotometry, Infrared , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL