Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836602

ABSTRACT

This study evaluates the antioxidant properties and anti-inflammatory potential of polyphenolic acid-rich fractions of 80% methanolic extract from the hairy roots of Dracocephalum moldavica. The fractionation of the crude extract yielded the following: a diethyl ether fraction rich in caffeic acid (DM1) (25.85 mg/g DWE), an n-butyl fraction rich in rosmarinic acid (DM3) (43.94 mg/g DWE) and a water residue rich in salvianolic acid B (DM4) (51.46 mg/g DWE). The content of these compounds was determined using high-performance liquid chromatography (HPLC). Their antioxidant activity was evaluated based on DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) and FRAP assays. The anti-inflammatory activity of the fractions was determined by their effect on nuclear factor kappa-B (NF-κB) activation and interleukin-1ß (IL-1ß) production in LPS E. coli stimulated monocytes. The level of pro-inflammatory IL-1ß in cells was measured using ELISA. The activation of NF-κB in THP1-Blue™ cells, resulting in the secretion of SEAP (secreted embryonic alkaline phosphatase), was detected spectrophotometrically using Quanti-Blue reagent. Among the tested fractions, the diethyl ether fraction (DM1) showed the highest antioxidant potential, with an EC50 value of 15.41 µg/mL in the DPPH assay and 11.47 µg/mL in ABTS and a reduction potential of 10.9 mM Fe(II)/g DWE in FRAP. DM1 at a concentration of 10 mg/mL also efficiently reduced LPS-induced SEAP secretion (53% inhibition) and IL-1ß production (47% inhibition) without affecting the normal growth of L929 fibroblast cells.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-kappa B , Ether , Lipopolysaccharides/pharmacology , Escherichia coli , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Biomolecules ; 13(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36830596

ABSTRACT

Salvia bulleyana is a plant native to the Chinese Yunnan Province. This species has been used in traditional Chinese medicine as a substitute for Danshen (the roots of Salvia miltiorrhiza). The aim of our study was to establish an effective system for propagating S. bulleyana shoots to obtain large amounts of material rich in bioactive compounds. Phytohormones were used to regulate shoot growth and regeneration potential and influence plant secondary metabolism. The shoot tips were incubated on a Murashige and Skoog agar medium supplemented with 0.1 or 0.5 mg/L IAA (indole-3-acetic acid) and the cytokinins benzylaminopurine (BAP), meta-topoline (M-T), 6-benzylaminopurine riboside (RBAP), N-benzyl-9-(2-tetrahydropyranyl)-adenine (BPA) or kinetin, (K) at concentrations of 0.5, 1 or 2 mg/L. It was observed that the type and concentration of growth regulator significantly influenced the regeneration potential of S. bulleyana shoots. The highest multiplication rate was obtained when 0.1 mg/L IAA and 2 mg/L BPA were used. Under these conditions, 100% of shoot tips formed buds and almost seven buds/shoot per explant were obtained after five weeks. Meanwhile, the highest biomass was found for shoots growing on a medium supplemented with 0.1 mg/L IAA and 1 mg/L M-T: 1.2 g of fresh weight and 0.17 g of dry weight. However, a medium with 0.1 mg/L IAA and 2 mg/L RBAP was most favorable for bioactive phenolic acid content, with a total polyphenol level (37.7 mg/g dw) 4.5 times higher than in shoots grown on medium without growth regulators (8.23 mg/g dw). Finally, optimal conditions were selected by TOPSIS (technique for order of preference by similarity to the ideal solution); the culture of S. bulleyana grown on an MS medium containing 0.1 mg/L IAA and 1 mg/L M-T was found to be the most efficient for polyphenol accumulation and can be used for the production of medicinally relevant compounds.


Subject(s)
Plant Growth Regulators , Salvia , Polyphenols , Biomass , Plant Shoots , China
3.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887119

ABSTRACT

The underground parts of Salvia bulleyana, a rare Chinese plant species, have long been used in traditional Chinese medicine. The Rhizobium rhizogenes-transformed root culture obtained from this plant might be a promising novel source of valuable phenolics, including rosmarinic acid. The present study identifies for the first time, the optimal growth conditions of S. bulleyana hairy roots regarding production efficiency. The comprehensive optimization comprised cultivation in different basal media (B5, SH, MS, and WP) with full- and half-strength macro- and microelements, different vitamin contents (full, half, one-quarter part, and without) and sucrose concentrations (2, 3, 4, 5%), and under different light conditions: in dark, under blue LED (λ = 430 nm), red LED (λ = 670 nm), mixed blue and red LED (30%:70%), and white LED (390-670 nm). Hairy root growth and bioactive compound accumulation were also detailed every five days over the 50-day culture cycle. The optimal conditions were determined using a technique for order preference by similarity to the ideal solution (TOPSIS). The most efficient combination for root growth and polyphenol content was found to be ½SH liquid medium with half vitamin concentration and 3% sucrose when grown in the dark. The biomass yield during the growth cycle was 6.1 g (fresh weight-FW) and 0.92 g (dry weight-DW) on one Erlenmeyer flask: a 14.3-fold increase in FW and 16.1-fold increase in DW in relation to the inoculum. The highest mean total phenolic content was 93.6 mg/g DW including about 70 mg/g DW rosmarinic acid, reached on day 40 of culture; compared to roots of two-year-old plants grown under field conditions, the total phenolic acid content was four times higher and rosmarinic acid eight times higher. The obtained results place the investigated culture among the best hair root cultures for rosmarinic acid production.


Subject(s)
Salvia , Phenols , Plant Roots , Polyphenols , Sucrose , Vitamins
4.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164257

ABSTRACT

Hairy root cultures are valuable sources of a range of phytochemicals. Among them, Salvia bulleyana root culture is a promising source of polyphenols, especially rosmarinic acid (RA), a phenolic acid depside with pleiotropic activity and a wide application in medicine and cosmetology. The aim of the study was to enhance the culture productivity by finding suitable elicitation protocol and to determine its biological potential in terms of antioxidant, anticancer and antimicrobial properties. The total content of phenols and the levels of particular constituents in root extracts were analyzed using HPLC-PDA. Among four elicitors tested (yeast extract; methyl jasmonate, MJA; trans-anethol; and cadmium chloride), MJA was found to be the most effective. The greatest boost in phenolic production (up to 124.4 mg/g dry weight) was observed after three-day treatment with MJA at 100 µM, with an almost 100% improvement compared to the controls (non-treated root culture). The hydromethanolic extract from the elicited culture exhibited strong antioxidant activity with IC50 values of 11.1 µg/mL, 6.5 µg/mL and 69.5 µg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)) and superoxide anion radical, respectively. Moreover, in concentrations of 0.5-5 mg/mL the extract inhibited the growth of LoVo, AGS and HeLa cell lines, but was safe for the L929 cells up to the concentration of 5 mg/mL. The extract also exhibited moderate antimicrobial activity. Thus, the results confirmed that elicitation can be a beneficial strategy for increase the phenolic acid biosynthesis in hairy roots of S. bulleyana, and that such a highly productive culture can show significant biological potential.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Hydroxybenzoates/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Salvia/chemistry , HeLa Cells , Humans , Plant Extracts/chemistry
5.
Biomolecules ; 11(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34680145

ABSTRACT

Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2-13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.


Subject(s)
Cytokinins/pharmacology , Plants, Medicinal/growth & development , Salvia/chemistry , Tissue Culture Techniques , Benzyl Compounds/pharmacology , Culture Media/chemistry , Culture Media/pharmacology , Humans , Medicine, Chinese Traditional , Plant Growth Regulators/genetics , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plants, Medicinal/chemistry , Purines/pharmacology , Regeneration/drug effects , Salvia/growth & development
6.
Molecules ; 25(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33022943

ABSTRACT

Transformed shoots of the Tibetan medicinal plant Dracocephalum forrestii were cultured in temporary immersion bioreactors (RITA and Plantform) and in nutrient sprinkle bioreactor (NSB) for 3 weeks in MS (Murashige and Skoog) liquid medium with 0.5 mg/L BPA (N-benzyl-9-(2-tetrahydropyranyl)-adenine) and 0.2 mg/L IAA (indole-3-acetic acid). The greatest biomass growth index (GI = 52.06 fresh weight (FW) and 55.67 dry weight (DW)) was observed for shoots in the RITA bioreactor, while the highest multiplication rate was found in the NSB (838 shoots per bioreactor). The levels of three phenolic acids and five flavonoid derivatives in the shoot hydromethanolic extract were evaluated using UHPLC (ultra-high performance liquid chromatography). The predominant metabolite was rosmarinic acid (RA)-the highest RA level (18.35 mg/g DW) and total evaluated phenol content (24.15 mg/g DW) were observed in shoots grown in NSB. The NSB culture, i.e., the most productive one, was evaluated for its antioxidant activity on the basis of reduction of ferric ions (ferric reducing antioxidant power, FRAP) and two scavenging radical (O2•- and DPPH, 1,1-diphenyl-2-picrylhydrazyl radical) assays; its antibacterial, antifungal, and antiproliative potential against L929 cells was also tested (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test). The plant material revealed moderate antioxidant and antimicrobial activities and demonstrated high safety in the MTT test-no cytotoxicity at concentrations up to 50 mg/mL was found, and less than a 20% decrease in L929 cell viability was observed at this concentration.


Subject(s)
Bioreactors , Lamiaceae/chemistry , Phenols/analysis , Plant Shoots/chemistry , Transformation, Genetic , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/analysis , Bacteria/drug effects , Cell Death/drug effects , Cell Line , Fungi/drug effects , Lamiaceae/growth & development , Mice , Microbial Sensitivity Tests , Phytochemicals/analysis , Plant Extracts/pharmacology
7.
J Biotechnol ; 318: 10-19, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32387397

ABSTRACT

This study was to obtain stable transformed roots of Salvia bulleyana using A. rhizogenes strain A4 and then evaluate their phytochemical profile and selected the most productive clone. Our results indicated that the type of explant and medium used for bacterium and explant incubation had an influence on the frequency of hairy root formation. The best response was obtained on leaves infected with bacteria cultivated on YMB medium supplemented with acetosyringone. Of the four selected transformed root clones, after five-week cultivation in Woody Plant (WP) medium, the highest growth indexes were demonstrated for line C1: i.e. 13 for fresh and 15 for dry weight (81.4 and 8.2 g/l fresh and dry weight, respectively). The qualitative analysis of hydromethanolic extracts of hairy roots of S. bulleyana using UPLC-PDA-ESI-MS/MS method showed the presence of 10 polyphenolic compounds including predominant rosmarinic acid (RA), its derivatives (hexoside and methyl rosmarinate), caffeic acid, its derivatives and several salvianolic acids: K, E and F. Their production varied among the four root clones studied; the highest RA (39.6 mg/g dry weight) and total polyphenol (48.9 mg/g dry weight) level were found in the roots of C4 clone. These values were significantly higher than those of the roots of plants grown for several years under field conditions. The transformation of the obtained root cultures was confirmed by polymerase chain reaction using aux1, aux2, rolB, rolC and rolD primers.


Subject(s)
Plant Roots/growth & development , Plant Roots/metabolism , Polyphenols/biosynthesis , Salvia , Agrobacterium/genetics , Cell Culture Techniques , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/genetics , Plants, Genetically Modified , Polyphenols/chemistry , Transformation, Genetic
8.
J Biotechnol ; 306: 125-133, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31574263

ABSTRACT

Dracocephalum forrestii is a perennial, endemic to China plant with a number of pharmaceutical properties. Transformed shoots of the species spontaneously regenerated from hairy roots induced by Agrobacterium rhizogenes. The transgenic nature of the shoots was confirmed by polymerase chain reaction (PCR). The shoot culture was multiplied on Murashige and Skoog (MS) medium with 0.2 mg/l IAA and 0.2, 0.5, 1.0, 2.0 or 5.0 mg/l purine-type cytokinins (mT, BAR, BPA or BAP). The highest multiplication rate (about thirteen shoot or buds per explant) was obtained on MS medium with 0.2 mg/l mT after four weeks of culture. The phenolic compounds present in the hydromethanolic extracts from the D. forrestii transgenic shoots were characterized using UPLC-PDA-ESI-MS. The shoots were found to biosynthesize three phenolic acids and five flavonoid glycosides. UHPLC analysis of the hydromethanolic extracts found the predominant phenolic acid to be rosmarinic acid, with its highest content observed in shoots cultivated with 5.0 mg/l BPA. In contrast, the greatest production of flavonoid derivatives (especially acacetin derivatives) was observed in the medium supplemented with 2 mg/l BPA.


Subject(s)
Cytokinins/pharmacology , Lamiaceae/drug effects , Lamiaceae/genetics , Phenols/metabolism , Plant Growth Regulators/pharmacology , Agrobacterium/genetics , Cinnamates/metabolism , Culture Media , Cytokinins/chemistry , DNA, Bacterial/genetics , Depsides/metabolism , Lamiaceae/growth & development , Lamiaceae/metabolism , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plants, Genetically Modified , Transformation, Genetic , Rosmarinic Acid
9.
Adv Clin Exp Med ; 28(4): 453-460, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30085423

ABSTRACT

BACKGROUND: It is widely known that reactive oxygen species (ROS) can cause oxidative damage in cells and have been linked to the pathogenesis of oxidative diseases, such as atherosclerosis, ischemia, neurodegenerative disease, diabetes, or cancer. Recently, much attention has been focused on preventive strategies for oxidative stress and related diseases. Plants represent a source of bioactive compounds whose antioxidant activity may be useful in protecting against pro-oxidative reactions. OBJECTIVES: The study determines the in vitro biological activity of the ethanolic extracts from the shoots and roots of Scutellaria species (S. altissima and S. alpina) in selected blood cells (blood platelets and lymphocytes). MATERIAL AND METHODS: Platelet activity, both resting and after thrombin stimulation, was used to indicate the ability of the plant extracts to inhibit the production of superoxide anion radicals (O2 •-) and platelet lipid peroxidation. The generation of superoxide anion radicals was measured by cytochrome c reduction. Lipid peroxidation in blood platelets was measured by the level of thiobarbituric acid reactive substances (TBARS). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay was used to determine the protective effect of Scutellaria extracts on lymphocyte cells against oxidative damage induced by hydroxyl radicals. RESULTS: Extracts (5-50 µg/mL) containing phenolic compounds from both Scutellaria species distinctly reduced nonenzymatic lipid peroxidation and arachidonic acid metabolism by blood platelets in vitro. When given at the tested concentration, the extracts reduced the generation of O2 •- in resting blood platelets and platelets activated by thrombin in vitro. All Scutellaria extracts (10 µg/mL) containing phenolic compounds also protected human lymphocytes against oxidative stress induced by hydrogen peroxide (H2O2). CONCLUSIONS: The present study suggests that the natural extracts from S. altissima and S. alpina have antioxidant properties and, therefore, may be beneficial in the prevention of diseases in which blood platelets and lymphocytes are involved, i.e., cancer or inflammatory and infective diseases.


Subject(s)
Antioxidants/pharmacology , Blood Platelets/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Scutellaria/chemistry , Antioxidants/analysis , Blood Platelets/metabolism , Humans , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Oxidative Stress/physiology , Plant Extracts/analysis , Plant Roots/chemistry , Plant Shoots/chemistry , Scutellaria baicalensis
10.
Molecules ; 23(6)2018 06 17.
Article in English | MEDLINE | ID: mdl-29914194

ABSTRACT

Salvia viridis L. is an annual herb used in Mediterranean medicine. The purpose of this study was to determine the polyphenol profile of aqueous (decoction and infusion) and hydroethanolic extracts of aerial parts of field-grown S.viridis and to evaluate their antioxidant activity. The polyphenol profiling was performed via UPLC-DAD/ESI-MS. Additionally, the total polyphenol content in extracts tested were determined by UV-Vis spectrophotometry using the Folin-Ciocalteu assay. The antioxidant effect was evaluated by the FRAP, DPPH, ABTS, O2•− scavenging and TBARS methods. The hydroethanolic extract gave the highest content of total phenolic compounds, followed by the infusion. The UPLC-DAD/ESI-MS analysis of extracts showed a total of 19 phenolic compounds identified as flavonoids (four compounds), phenylethanoids (eight compounds) and phenolic acids (seven compounds). Rosmarinic acid was the predominant phenolic acid, verbascoside was the predominant phenylethanoid, while apigenin glucuronide or methylluteolin glucuronide, depending on the sample, were the predominant flavonoids in the analyzed extracts. The presence of a high polyphenol level indicated a high antioxidant activity of both the infusion and the hydroalcoholic extract. These results indicate that S. viridis is a rich resource of phenolic compounds and can be used in dietary applications with the potential to reduce oxidative stress.


Subject(s)
Antioxidants/analysis , Polyphenols/analysis , Salvia/chemistry , Flavonoids/isolation & purification , Molecular Structure , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Shoots/chemistry
11.
Curr Pharm Biotechnol ; 19(5): 358-371, 2018.
Article in English | MEDLINE | ID: mdl-29943697

ABSTRACT

BACKGROUND: This review is intended to draw the attention of pharmaceutical and biotechnological communities to the untapped potential of the Scutellaria genus. Skullcaps, as they are more widely known, are found in one of the oldest materia medica in the world, that of ancient Chinese pharmacology, and their numerous wide range of medicinal bioactivities have been studied both in vivo and in vitro. For thousands of years, chemical compounds from the Scutellaria species have been safely used as antitumor, antibacterial, antiviral, anti-inflammatory, antioxidant or hepatoprotective factors. OBJECTIVE: As these effects are well known, reflected in the presence of Scutellaria plants in national pharmacopoeias, it is clear that the plant has yet enormous unexploited potential. The European pharmacological market has turned to the resources of Scutellaria only in the last two decades, and although the construction and clinical processing of a new drug is a long process, the general impression is that very few medical products in pharmacies have been inspired by the phytochemistry of skullcaps. CONCLUSION: This paper presents the current state of knowledge on the wealth of Scutellaria chemical compounds with treatment applications, its tissue culture and biotechnological achievements, especially in the context of the production of secondary metabolites.


Subject(s)
Biotechnology/methods , Phytotherapy , Scutellaria , Humans , Plant Extracts/pharmacology , Scutellaria/chemistry , Scutellaria/genetics , Scutellaria/growth & development , Scutellaria/metabolism
12.
Molecules ; 21(6)2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27314314

ABSTRACT

Methanolic extracts from the aerial parts and roots of two Scutellaria species, S. alpina and S. altissima, and five polyphenols from these plants demonstrated a significant ability to inhibit the formation of advanced glycation end-products (AGE) in vitro. S. alpina, which is richer in polyphenolic compounds, had strong antiglycation properties. These extracts demonstrated also high activity in the FRAP (ferric-reducing antioxidant power), antiradical (DPPH) and lipid peroxidation inhibition assays. Among the pure compounds, baicalin was the strongest glycation inhibitor (90.4% inhibition at 100 µg/mL), followed by luteolin (85.4%). Two other flavone glycosides had about half of this activity. Verbascoside was similar to the reference drug aminoguanidine (71.2% and 75.9%, respectively). The strong correlation observed between AGE inhibition and total flavonoid content indicated that flavonoids contribute significantly to antiglycation properties. A positive correlation was also observed between antiglycative and antioxidant activities. The studied skullcap species can be considered as a potential source of therapeutic agents for hyperglycemia-related disorders.


Subject(s)
Glycation End Products, Advanced/antagonists & inhibitors , Hyperglycemia/drug therapy , Plant Extracts/chemistry , Polyphenols/chemistry , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Cattle , Flavonoids/chemistry , Flavonoids/pharmacology , Lipid Peroxidation/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Polyphenols/pharmacology , Scutellaria/chemistry , Serum Albumin, Bovine/chemistry
13.
Acta Pol Pharm ; 72(4): 769-75, 2015.
Article in English | MEDLINE | ID: mdl-26647634

ABSTRACT

Antioxidant properties and total phenolic and flavonoid contents were evaluated in methanolic extracts of shoots from Ballota nigra plants initiated in vitro (from nodal explants) and in vivo (from seeds). The plants were grown in greenhouse and in the field, and were analyzed at the vegetative and flowering stages. The shoot extract of wild-grown plants of B. nigra was also investigated. The results indicate that antioxidant potential of the B. nigra extracts seems to be due to their scavenging of free radicals (DPPH assay) and metal reducing (FRAP test), while they were less effective at the prevention of linoleic acid peroxidation (LPO test). The extracts from shoots of in vitro derived plants were found to exhibit the greatest antioxidant properties. The extracts were also characterized by the highest content of phenolic compounds and their level was affected by plant developmental stage. The extracts of shoots collected at the flowering period exhibited higher amounts of phenolics and flavonoids than in the extracts of immature plants. A close correlation between the total phenolic content and flavonoid content and antioxidant activity using the DPPH and FRAP assays was obtained. The results of the present study suggest the use in vitro-derived plants of B. nigra instead of using wild plants for pharmaceutical purposes.


Subject(s)
Antioxidants/pharmacology , Ballota , Plant Extracts/pharmacology , Ballota/chemistry , Flavonoids/analysis , Phenols/analysis , Tissue Culture Techniques
14.
Acta Biochim Pol ; 62(2): 253-8, 2015.
Article in English | MEDLINE | ID: mdl-26015995

ABSTRACT

We determined the in vitro antioxidant activity of methanolic extracts from the shoots and roots of Scutellaria species (S. altissima and S. alpina) against the action of strong oxidants: hydrogen peroxide (H2O2) and H2O2+Fe(2+) (donor of hydroxyl radicals) on plasma proteins and lipids. Lipid peroxidation in human plasma was measured by the level of thiobarbituric acid reactive species (TBARS). Protein oxidation was measured by quantitation of thiol group. We observed that the extracts (5-50 µg ml(-1)) containing phenolic compounds from both Scutellaria species distinctly reduced oxidation of lipids and proteins in human plasma treated with H2O2. These results also indicated that the extracts have a protective effect against oxidative damage to the human plasma lipids and proteins by induced hydroxyl radical. The main components of the plant materials analysed were flavonoids, present as aglycones (luteolin) or glycosides (cynaroside, baicalin, wogonoside). In all of the extracts, the phenylethanoid verbascoside was also found. The properties of the tested plant extracts were also compared with the action of a well characterised commercial antioxidative polyphenolic extract from the berries of Aronia melanocarpa (Aronox(®)). The comparative studies indicated that the analysed plant extracts were comparable to or even more effective in reducing the oxidation processes than the A. melanocarpa extract. The present study suggests that natural extracts from S. altissima and S. alpina have antioxidant activities and, therefore, may be beneficial in the prevention of diseases related to oxidant stress, such as cancer, cardiovascular, and inflammatory diseases.


Subject(s)
Antioxidants/pharmacology , Plant Extracts/pharmacology , Scutellaria/chemistry , Antioxidants/analysis , Blood/drug effects , Flavanones/analysis , Flavonoids/analysis , Glucosides/analysis , Glucosides/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Molecular Structure , Oxidative Stress/drug effects , Phenols/analysis , Phenols/pharmacology , Plant Extracts/analysis , Plant Roots/chemistry , Plant Shoots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL