Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24799940

ABSTRACT

Jitai tablet (JTT) is a traditional Chinese medicine used to treat neuropsychiatric disorders. We previously demonstrated that JTT treatment led to increased level of dopamine transporter (DAT) in the striatum, thus indicating that JTT might have therapeutic potential for Parkinson's disease (PD), which is characterized by dysregulated dopamine (DA) transmission and decreased striatal DAT expression. The aim of this study was to investigate the neuroprotective effect of JTT on MPTP-induced PD mice. Using locomotor activity test and rotarod test, we evaluated the effects of JTT (0.50, 0.15, or 0.05 g/kg) on MPTP-induced behavioral impairments. Tyrosine hydroxylase TH-positive neurons in the substantia nigra and DAT and dopamine D2 receptor (D2R) levels in the striatum were detected by immunohistochemical staining and/or autoradiography. Levels of DA and its metabolites were determined by HPLC. In MPTP-treated mice, behavioral impairments were alleviated by JTT treatment. Moreover, JTT protected against impairment of TH-positive neurons and attenuated the MPTP-induced decreases in DAT and D2R. Finally, high dose of JTT (0.50 g/kg) inhibited the MPTP-induced increase in DA metabolism rate. Taken together, results from our present study provide evidence that JTT offers neuroprotective effects against the neurotoxicity of MPTP and thus might be a potential treatment for PD.

2.
Am J Chin Med ; 41(2): 443-58, 2013.
Article in English | MEDLINE | ID: mdl-23548131

ABSTRACT

An increasing number of cancer patients are using herbs in combination with conventional chemotherapeutic treatment. It is therefore important to study the potential consequences of the interactions between herbs and anticancer drugs. The effects of extracts from Panax ginseng (PGS) and Salvia miltiorrhiza Bunge (SMB) on the pharmacokinetics of 5-fluorouracil (5-FU) were performed in vivo and detected by high performance liquid chromatography (HPLC), while, an ATP assay was used to study the pharmacodynamic interactions in vitro. The results of the pharmacokinetic experiments showed a significant increase in the elimination half-life (t1/2(k e )) of 5-FU in the PGS-pretreated group and in the area under the curve (AUC) in the SMB-pretreated group compared with the control group. However, after SMB pretreatment, weight loss was observed in rats. The results of pharmacodynamic experiments showed that neither PGS nor SMB, when used alone, directly inhibited cancer cell growth at 0.1-100 µg/ml. Moreover, PGS had a synergistic cytotoxic effect with 5-FU on human gastric cancer cells but not on normal gastric cells. The results imply that when combined with 5-FU, PGS may be a better candidate for further study. This study might provide insights for the selection of herbal-chemotherapy agent interactions.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Fluorouracil/pharmacokinetics , Panax/chemistry , Salvia miltiorrhiza/chemistry , Animals , Antineoplastic Agents/analysis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Drug Synergism , Fluorouracil/analysis , Humans , Male , Neoplasms/drug therapy , Neoplasms/physiopathology , Rats , Rats, Sprague-Dawley
3.
BMC Complement Altern Med ; 11: 123, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22132732

ABSTRACT

BACKGROUND: Botanical medicines are increasingly combined with chemotherapeutics as anticancer drug cocktails. This study aimed to assess the chemotherapeutic potential of an extract of Taxus cuspidata (TC) needles and twigs produced by artificial cuttage and its co-effects as a cocktail with 5-fluorouracil (5-FU). METHODS: Components of TC extract were identified by HPLC fingerprinting. Cytotoxicity analysis was performed by MTT assay or ATP assay. Apoptosis studies were analyzed by H & E, PI, TUNEL staining, as well as Annexin V/PI assay. Cell cycle analysis was performed by flow cytometry. 5-FU concentrations in rat plasma were determined by HPLC and the pharmacokinetic parameters were estimated using 3p87 software. Synergistic efficacy was subjected to median effect analysis with the mutually nonexclusive model using Calcusyn1 software. The significance of differences between values was estimated by using a one-way ANOVA. RESULTS: TC extract reached inhibition rates of 70-90% in different human cancer cell lines (HL-60, BGC-823, KB, Bel-7402, and HeLa) but only 5-7% in normal mouse T/B lymphocytes, demonstrating the broad-spectrum anticancer activity and low toxicity to normal cells of TC extract in vitro. TC extract inhibited cancer cell growth by inducing apoptosis and G(2)/M cell cycle arrest. Most interestingly, TC extract and 5-FU, combined as a cocktail, synergistically inhibited the growth of cancer cells in vitro, with Combination Index values (CI) ranging from 0.90 to 0.26 at different effect levels from IC50 to IC90 in MCF-7 cells, CI ranging from 0.93 to 0.13 for IC40 to IC90 in PC-3M-1E8 cells, and CI < 1 in A549 cells. In addition, the cocktail had lower cytotoxicity in normal human cell (HEL) than 5-FU used alone. Furthermore, TC extract did not affect the pharmacokinetics of 5-FU in rats. CONCLUSIONS: The combinational use of the TC extract with 5-FU displays strong cytotoxic synergy in cancer cells and low cytotoxicity in normal cells. These findings suggest that this cocktail may have a potential role in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Fluorouracil/pharmacology , Neoplasms/drug therapy , Plant Extracts/pharmacology , Taxus/chemistry , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Drug Synergism , Humans , Male , Mice , Neoplasms/physiopathology , Rats , Rats, Sprague-Dawley
4.
Food Chem Toxicol ; 49(6): 1410-5, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21440026

ABSTRACT

Tea drinking is widely practiced in the world and has recently increased among cancer patients. However, the effects of concurrent consumption of tea on the bioavailability and the net therapeutic potential of co-administered chemical drugs are not clear. In this study, the effects of green tea on the pharmacokinetics of 5-fluorouracil (5-FU) in rats and the pharmacodynamics in human cell lines in vitro were studied. The pharmacokinetic experiment indicated that there was an approximately 151% increase in the maximum plasma concentration (C(max)) and an approximately 425% increase in the area under the plasma concentration curve (AUC) of 5-FU in the green tea-treated group compared with the control group. Green tea consumption increased the plasma concentration of 5-FU. In addition, the pharmacodynamics experiment showed that at the moderate dose level (equivalent to <6 cups daily in human), neither fresh green tea extract nor (-)-epigallocatechin-3-gallate (EGCG) showed significant additive effects on the cytotoxicity of 5-FU in human cell lines. The results showed that it is crucial to perform therapeutic drug monitoring (TDM) when the cancer patients have a habit of drinking green tea.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Camellia sinensis/chemistry , Fluorouracil/pharmacology , Neoplasms/drug therapy , Plant Extracts/pharmacology , Animals , Area Under Curve , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Humans , Male , Neoplasms/metabolism , Neoplasms/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL