Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Discov Oncol ; 15(1): 32, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329652

ABSTRACT

BACKGROUND: Solitary fibrous tumors (SFT) and meningiomas (MA) have similar clinical and radiographic presentations but require different treatment approaches and have different prognoses. This emphasizes the importance of a correct preoperative diagnosis of SFT versus MA. OBJECTIVE: In this study, investigated the differences in imaging characteristics between SFT and MA to improve the accuracy of preoperative imaging diagnosis of SFT. METHODS: The clinical and imaging data of 26 patients with SFT and 104 patients with MA who were pathologically diagnosed between August 2017 and December 2022, were retrospectively analyzed. The clinical and imaging differences between SFT and MA, as well as between the various pathological grades of SFT, were analyzed. RESULTS: Age, gender, cystic change, flow void phenomenon, yin-yang sign, lobulation, narrow base, tumor/cortex signal ratio (TCSR) > 1.0 in T1-weighted imaging (T1WI), TCSR ≥ 1.1 in T2-weighted imaging (T2WI), peritumoral edema, and absence of dural tail sign varied between SFT and MA. As per the receiver operating characteristic (ROC) curve analysis, TCSR > 1 in T1WI has the maximum diagnostic accuracy for SFT. Cranial or venous sinus invasion had a positive effect on SFT (Grade III, World Health Organization (WHO) grading). CONCLUSION: Among the many radiological and clinical distinctions between SFT and MA, TCSR ≥ 1 exhibits the highest predictive efficacy for SFT; while cranial or venous sinus invasion may be a predictor of WHO grade III SFT.

2.
Altern Ther Health Med ; 30(1): 472-480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820679

ABSTRACT

Objective: Acupuncture with low-frequency electrical stimulation (Acu-LFES) can attenuate muscle atrophy. Previous studies have found that Acu-LFES reduces the let-7 family in serum exosomes. This study explored the effects of let-7c-5p in chronic kidney disease (CKD) muscle atrophy. Methods: A total of 24 mice were randomly divided into control group, Acu-LFES group, CKD group, and CKD/Acu-LFES group (n = 6/group). The 5/6 nephrectomy was performed to establish the CKD model in mice. After 20 weeks, the Acu-LFES group and CKD/Acu-LFES group were treated with electroacupuncture at the "Zu San Li" and "Yang Ling Quan" bilaterally points for 15 minutes once. Surface sensing of translation (SUnSET), Reverse Transcription-quantitative PCR(RT-qPCR), immunofluorescence staining, and Western blot were performed to examine each group's state of protein production and myogenic differentiation. we knocked down or exogenously expressed let-7c-5p in C2C12 myoblast, RT-qPCR, and Western blot were performed to examine protein synthesis and myogenic differentiation. Results: The protein expressions of MyoD and Myogenin (MyoG) were decreased in the CKD group (P = .029 and P = .026) concomitant with a decrease in the muscle fiber cross-sectional area. Acu-LFES prevented muscle atrophy in CKD mice. The protein expressions of MyoD and MyoG were increased in the CKD/Acu-LFES group (P = .006 and P = .001). In muscle of CKD mice, IGF1, IGF1R, IRS1, phosphorylated mTOR and P70S6K proteins were decreased compared with control muscle (P = .001, P = .007, P < .001, P < .001 and P < .001), whereas atrogin-1/MAFbx and MuRF1 were dramatically increased (P < .001). Acu-LFES reversed these phenomena, indicating IGF1/mTOR signaling pathway was induced to promote muscle protein synthesis and myogenic differentiation. Meanwhile, Acu-LFES caused a decrease of let-7c-5p in skeletal muscle of CKD mice (P = .034). Inhibiting let-7c-5p promoted C2C12 myogenic differentiation (P = .002 and P = .001) and increased IGF1, IGF1R, IRS1 levels while upregulating mTOR and P70S6K phosphorylation (P < .001, P = .002, P = .009, P < .001 and P = .007). It is interesting to observe that the abundance of atrogin-1/MAFbx and MuRF-1 was unaffected by let-7c-5p (P > .05). Conclusions: Acu-LFES-reduced expression of let-7c-5p can ameliorate CKD-induced skeletal muscle atrophy by upregulating the IGF1/mTOR signaling pathway, which enhances skeletal muscle protein synthesis and myogenic differentiation. Let-7c-5p may be a potential regulator for the treatment of muscle atrophy.


Subject(s)
Electroacupuncture , Renal Insufficiency, Chronic , Mice , Animals , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Renal Insufficiency, Chronic/therapy , TOR Serine-Threonine Kinases/metabolism
3.
Adv Sci (Weinh) ; 10(27): e2301190, 2023 09.
Article in English | MEDLINE | ID: mdl-37469018

ABSTRACT

RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.


Subject(s)
Signal Transduction , Stomach Neoplasms , Humans , Phosphatidylinositol 3-Kinases , Intracellular Signaling Peptides and Proteins/metabolism , Stomach Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Chin J Nat Med ; 19(8): 561-579, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34419257

ABSTRACT

Candida is an intractable life-threatening pathogen. Candida infection is extremely difficult to eradicate, and thus is the major cause of morbidity and mortality in immunocompromised individuals. Morevover, the rapid spread of drug-resistant fungi has led to significant decreases in the therapeutic effects of clinical drugs. New anti-Candida agents are urgently needed to solve the complicated medical problem. Natural products with intricate structures have attracted great attention of researchers who make every endeavor to discover leading compounds for antifungal agents. Their novel mechanisms and diverse modes of action expand the variety of fungistatic agents and reduce the emergence of drug resistance. In recent decades, considerable effort has been devoted to finding unique antifungal agents from nature and revealing their unusual mechanisms, which results in important progress on the development of new antifungals, such as the novel cell wall inhibitors YW3548 and SCY-078 which are being tested in clinical trials. This review will present a brief summary on the landscape of anti-Candida natural products within the last decade. We will also discuss in-depth the research progress on diverse natural fungistatic agents along with their novel mechanisms.


Subject(s)
Antifungal Agents , Biological Products , Candida/drug effects , Candidiasis , Antifungal Agents/pharmacology , Biological Products/pharmacology , Candidiasis/drug therapy , Humans , Microbial Sensitivity Tests
5.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3330-3336, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34396752

ABSTRACT

The present study aimed to explore the correlation between agronomic traits and quality indexes of Dendrobium nobile and its application value in agricultural breeding. The cultivated strains of D. nobile in Hejiang-Chishui producing areas were extensively collected,and the main agronomic traits and quality indexes were measured. The agronomic traits with significant correlation with quality indexes were screened out by the correlation analysis,and then the parental lines and self-bred F_1 generation plants were furtherverified. Among 96 lines of D. nobile,the content of soluble polysaccharides showed a significant negative correlation with dendrobine( P < 0. 01),and no significant correlation with agronomic traits in stems and leaves. The content of dendrobine exhibited a significant positive correlation with the stem width-thickness ratio( at the largest cross section; P < 0. 01),and no significant correlation with other agronomic traits. Regression analysis further verified the positive correlation between dendrobine content and stem width-thickness ratio( R2> 0. 9). Two lines,JC-10 and JC-35,with significant differences in stem width-thickness ratio were screened out( P <0. 05). The corresponding F1 generation plants by self-pollination both showed that the dendrobine content was higher with greater stem width-thickness ratio( P < 0. 01). The experimental results suggested that within a certain range,the dendrobine content was higher in D. nobile with flatter stem. Therefore,in the breeding of D. nobile,this specific trait could be used for screening plants with high content of quality indexes such as dendrobine.


Subject(s)
Dendrobium , Agriculture , Dendrobium/genetics , Plant Breeding , Plant Leaves/genetics , Polysaccharides
6.
J Agric Food Chem ; 68(7): 2054-2062, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31995984

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease which is partly characterized by the aggregation of hyperphosphorylated Tau proteins forming neurofibrillary tangles that promote AD pathogenesis. In this study, we investigated the effects of tanshinone IIA (Tan IIA) isolated from Salvia miltiorrhiza on Tau degradation in the treatment of AD. The results showed that Tan IIA reduced the Tau expression and attenuated Tau phosphorylation in N2a cells, Tau-overexpressing cells, and 3×Tg-AD mouse primary neuron cells. Moreover, Tan IIA increased polyubiquitinated Tau accumulation and induced proteasomal degradation of the Tau protein. Additionally, Tan IIA became bound to the Tau protein and inhibited the formation of heparin-induced Tau fibrils. In summary, Tan IIA can increase polyubiquitinated Tau accumulation and induce the proteasomal degradation of the Tau protein and the binding of Tan IIA to the Tau protein, inhibiting the formation of Tau fibrils. Tan IIA may be further explored as a potential candidate for AD treatment.


Subject(s)
Abietanes/pharmacology , Alzheimer Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Proteasome Endopeptidase Complex/metabolism , Salvia miltiorrhiza/chemistry , Ubiquitins/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Cell Line , Humans , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Proteasome Endopeptidase Complex/genetics , Proteolysis/drug effects , tau Proteins/genetics
7.
J Zhejiang Univ Sci B ; 8(5): 323-30, 2007 May.
Article in English | MEDLINE | ID: mdl-17542060

ABSTRACT

This 6-week study was conducted to evaluate the effects of seven different levels of dietary chromium (Cr) (0, 75, 150, 300, 450, 600, and 1 200 ppb Cr) in the form of Cr nanoparticle (CrNano) on growth, body composition, serum hormones and tissue Cr in Sprague-Dawley (SD) rats. Seventy male SD rats (average initial body weight of (83.2+/-4.4) g) were randomly assigned to seven dietary treatments (n=10). At the end of the trial, body composition was assessed via dual energy X-ray absorptiometry (DEXA). All rats were then sacrificed to collect samples of blood, organs and tissues for determination of serum hormones and tissue Cr contents. The results indicated that lean body mass was significantly increased (P<0.05) due to the addition of 300 and 450 ppb Cr from CrNano. Supplementation of 150, 300, 450, and 600 ppb Cr decreased (P<0.05) percent body fat significantly. Average daily gain was increased (P<0.05) by addition of 75, 150, and 300 ppb Cr and feed efficiency was increased (P<0.05) by supplementation of 75, 300, and 450 ppb Cr. Addition of 300 and 450 ppb Cr decreased (P<0.05) the insulin level in serum greatly. Cr contents in liver and kidney were greatly increased (P<0.05) by the addition of Cr as CrNano in the dosage of from 150 ppb to 1 200 ppb. In addition, Supplementation of 300, 450, and 600 ppb Cr significantly increased (P<0.05) Cr content in the hind leg muscle. These results suggest that supplemental CrNano has beneficial effects on growth performance and body composition, and increases tissue Cr concentration in selected muscles.


Subject(s)
Body Composition/drug effects , Body Weight/drug effects , Chromium/administration & dosage , Chromium/pharmacokinetics , Hormones/blood , Nanoparticles/administration & dosage , Animals , Chromium/chemistry , Dose-Response Relationship, Drug , Male , Nanoparticles/ultrastructure , Organ Specificity , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL