Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 196: 110547, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32244119

ABSTRACT

Large molecular weight pig biogas slurry (L-PBS) and small molecular weight pig biogas slurry (S-PBS) were separated from original pig biogas slurry (O-PBS) using a 100 kDa membrane. The original bioavailability and biosafety of L-PBS was very low. In order to enhance the total bioavailable dissolved organic nitrogen (TB-DON) and total bioavailable dissolved organic phosphorus (TB-DOP), optimum catalytic ozonation of L-PBS conditions were determined using Box-behnken design models (P < 0.0001) and intersection tests. The optimal values for ozone concentration, pH value, active catalyst concentration and reaction time were 2.63 mg·L-1, 6.48, 1.43 g·L-1 and 40 min, respectively. Catalytic ozonation can effectively decompose and transform 68.07% of L-PBS into S-PBS to improve content organic bioavailability, with a molecular weight distribution of 0-1 kDa (13.53%), 1-5 kDa (16.62%), 5-10 kDa (11.16%), 10-30 kDa (11.73%), 30-100 kDa (15.04%). Catalytic ozonation of L-PBS can reduce protein levels from 85.28% to 47.18%, but increases the proportion of fulvic and humic components from 10.22% to 32.67% and 4.51%-20.15%, respectively. Because catalytic ozonation changes the internal components and molecular weights of L-PBS, both saw increases in TB-DON and TB-DOP from 3.33% to 41.12% and 2.43%-37.88%, respectively, with a large number of TB-DON and TB-DOP derived from hydrophilic organic components during catalytic ozonation. These important internal mechanisms changed by catalytic ozonation can effectively reduce the ecotoxicity (IR, from 76.5% to 33.1%) and phytotoxicity (GI, enhanced from 35.4% to 70.3%) of L-PBS. Therefore, catalytic ozonation combined with membrane separation is a choice technology in improving the nutrition of biogas slurry and reduce its ecological risk.


Subject(s)
Biofuels , Ozone/chemistry , Animals , Catalysis , Molecular Weight , Nitrogen/analysis , Phosphorus/analysis , Swine
2.
Environ Sci Process Impacts ; 18(9): 1185-92, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27421071

ABSTRACT

This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.


Subject(s)
Bacteria/metabolism , Benzoquinones/metabolism , Chromium/metabolism , Environmental Pollutants/metabolism , Ferric Compounds/chemistry , Aerobiosis , Biodegradation, Environmental , Chromium/chemistry , Environmental Pollutants/chemistry , Geologic Sediments/chemistry , Oxidation-Reduction
3.
Water Sci Technol ; 67(9): 1976-83, 2013.
Article in English | MEDLINE | ID: mdl-23656940

ABSTRACT

In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.


Subject(s)
Biofilms , Bioreactors , Chemical Industry , Petroleum , Wastewater , Water Purification/methods , Aerobiosis , Anaerobiosis , Biological Oxygen Demand Analysis
SELECTION OF CITATIONS
SEARCH DETAIL