Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Article in English | MEDLINE | ID: mdl-37770144

ABSTRACT

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Subject(s)
Antineoplastic Agents , Fabaceae , Cricetinae , Animals , Humans , Mutagens/toxicity , DNA Damage , Cricetulus , Comet Assay , Cell Line, Tumor , Plant Extracts/toxicity , DNA
2.
BMC Cancer ; 21(1): 448, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888065

ABSTRACT

BACKGROUND: The advances in colorectal cancer (CRC) treatment include the identification of deficiencies in Mismatch Repair (MMR) pathway to predict the benefit of adjuvant 5-fluorouracil (5-FU) and oxaliplatin for stage II CRC and immunotherapy. Defective MMR contributes to chemoresistance in CRC. A growing body of evidence supports the role of Poly-(ADP-ribose) polymerase (PARP) inhibitors, such as Olaparib, in the treatment of different subsets of cancer beyond the tumors with homologous recombination deficiencies. In this work we evaluated the effect of Olaparib on 5-FU cytotoxicity in MMR-deficient and proficient CRC cells and the mechanisms involved. METHODS: Human colon cancer cell lines, proficient (HT29) and deficient (HCT116) in MMR, were treated with 5-FU and Olaparib. Cytotoxicity was assessed by MTT and clonogenic assays, apoptosis induction and cell cycle progression by flow cytometry, DNA damage by comet assay. Adhesion and transwell migration assays were also performed. RESULTS: Our results showed enhancement of the 5-FU citotoxicity by Olaparib in MMR-deficient HCT116 colon cancer cells. Moreover, the combined treatment with Olaparib and 5-FU induced G2/M arrest, apoptosis and polyploidy in these cells. In MMR proficient HT29 cells, the Olaparib alone reduced clonogenic survival, induced DNA damage accumulation and decreased the adhesion and migration capacities. CONCLUSION: Our results suggest benefits of Olaparib inclusion in CRC treatment, as combination with 5-FU for MMR deficient CRC and as monotherapy for MMR proficient CRC. Thus, combined therapy with Olaparib could be a strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Mismatch Repair/drug effects , Fluorouracil/pharmacology , Phthalazines/pharmacology , Piperazines/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/genetics , DNA Damage , DNA Repair/drug effects , Drug Synergism , HCT116 Cells , Humans
3.
J Toxicol Environ Health A ; 79(18): 825-36, 2016.
Article in English | MEDLINE | ID: mdl-27587288

ABSTRACT

Grapes are one of the most commonly consumed fruit, in both fresh and processed forms; however, a significant amount is disposed of in the environment. Searching for a use of this waste, the antigenotoxic, antimutagenic, and antioxidant activities of aqueous extracts from organic and conventional Vitis labrusca leaves were determined using V79 cells as model. The antigenotoxic activity was analyzed by the alkaline comet assay using endonuclease III and formamidopyrimidine DNA glycosylase enzymes. The antimutagenic property was assessed through the micronucleus (MN) formation, and antioxidant activities were assessed using 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH(●)) radical scavenging, as well as with superoxide dismutase (SOD) and catalase (CAT) activity assays. In addition, phenolic content and ascorbic acid levels of both extracts were determined. Data showed that both organic and conventional grapevine leaves extracts possessed antigenotoxic and antimutagenic properties. The extract of organic leaves significantly reduced intracellular reactive oxygen species (ROS) levels in V79 cells, and displayed greater ability for DPPH(●) scavenging and higher SOD and CAT activities than extract from conventional leaves. Further, the extract from organic leaves contained higher phenolic and ascorbic acid concentrations. In summary, extracts from organic and conventional grape leaves induced important in vitro biological effects.


Subject(s)
Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Ascorbic Acid/analysis , Organic Agriculture , Polyphenols/analysis , Vitis/chemistry , Animals , Cell Line , Cricetulus , Micronucleus Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry
4.
J Toxicol Environ Health A ; 78(18): 1170-80, 2015.
Article in English | MEDLINE | ID: mdl-26383782

ABSTRACT

Arrabidaea chica Verlot (Bignoniaceae) has been used as a medicinal herb to treat anemia, hemorrhage, inflammation, intestinal colic, hepatitis, and skin infections in the Brazilian Amazon region. Studies have demonstrated the healing properties of extracts obtained from A. chica leaves, which contain anthocyanins and flavonoids. However, few investigations have assessed the safe use of this plant species. In this study, mutagenic and genotoxic effects of a crude aqueous extract, a butanolic fraction, and aqueous waste from A. chica leaves were evaluated using the Salmonella/microsome assay in TA98, TA97a, TA100, TA102, and TA1535 strains and the alkaline comet assay in Chinese hamster ovary (CHO) cell culture with and without metabolic activation. The crude aqueous extract, butanolic fraction, and aqueous waste were not mutagenic in any of the Salmonella typhimurium strains tested, and showed negative responses for genotoxicity in CHO cells. High-performance liquid chromatography (HPLC) analysis indicated the presence of phenolic acids and flavonoids such as rutin and luteolin. The lack of mutagenic/genotoxic effects might be due to phytochemical composition with high concentrations of known anti-inflammatory compounds. Thus, the crude aqueous extract, butanolic fraction, and aqueous waste from A. chica leaves do not appear to pose short-term genotoxic risks.


Subject(s)
Bignoniaceae/chemistry , Plant Extracts/pharmacology , Animals , CHO Cells , Chromatography, High Pressure Liquid , Comet Assay , Cricetulus , DNA Damage , Microsomes/drug effects , Mutagens/pharmacology , Plant Extracts/adverse effects , Plant Leaves/chemistry , Plants, Medicinal/adverse effects , Plants, Medicinal/chemistry , Salmonella typhimurium/drug effects
5.
Nutr Cancer ; 65(7): 943-53, 2013.
Article in English | MEDLINE | ID: mdl-23919376

ABSTRACT

Orange juice (OJ) is among the most consumed fruit juices worldwide, and its chemopreventive action is fairly addressed in the literature. This review critically presents the available evidence linking OJ with cancer chemoprevention and on discussing the putative mechanisms and negative health effects. The chemopreventive action of OJ is related to its effect on metabolic enzymes and its antiinflammatory, cytoprotective/apoptotic, hormonal, cell signaling-modulating, antioxidant, and antigenotoxic effects. Most studies on OJ are in vitro, and few are conducted in vivo. Results from in vitro studies must be interpreted carefully because these findings do not consider in vivo bioavailability. However, such results are useful for studying the impact of different processing and storage methods on OJ's chemopreventive effect. Evidence of OJ's chemoprevention in humans is limited. OJ is antimutagenic in bacteria and antigenotoxic in humans and rodents. Studies using rodent cancer models showed that OJ is cancer chemopreventive, influencing either the induction stage or the promotion stage. The composition and, therefore, the chemopreventive action of OJ might be influenced by different cultivars, climates, extraction methods, packaging, storage temperatures, and shelf lives, among other factors. Epidemiological studies and randomized controlled intervention studies in humans evaluating the chemopreventive effect of OJ, taking into consideration variability in OJ composition, are needed.


Subject(s)
Beverages/analysis , Chemoprevention , Citrus/chemistry , Fruit/chemistry , Neoplasms/prevention & control , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cytoprotection , DNA Damage/drug effects , Disease Models, Animal , Humans , Phytoestrogens/pharmacology , Randomized Controlled Trials as Topic
6.
J Toxicol Environ Health A ; 76(6): 381-90, 2013.
Article in English | MEDLINE | ID: mdl-23557236

ABSTRACT

Arrabidaea chica Verlot (Bignoniaceae) is an important folk medicine plant native to the Amazon region and used to treat anemia, hemorrhage, inflammation, intestinal colic, hepatitis, and skin affections. Although studies showed its therapeutic properties, little knowledge regarding genotoxic properties of this plant is available. The aim of this study was to determine the potential mutagenic and genotoxic/antigenotoxic effects of an A. chica chloroformic fraction (Ac-CF) obtained from leaves containing bioactive metabolites. The mutagenic effects were evaluated using the Salmonella mutagenicity assay, with TA98, TA97a, TA100, TA102, and TA1535 strains, with and without metabolic activation. In vivo mutagenic and genotoxic/antigenotoxic effects were investigated using the micronucleus (MN) test in bone marrow and alkaline comet assay in blood and liver after administration of 100, 500, or 1000 mg/kg Ac-CF in CF-1 mice by gavage (once a day for 3 d). In vitro antioxidant potential was evaluated using DPPH and xanthine/hypoxanthine assays. Ac-CF was not mutagenic in any of the Salmonella typhimurium strains tested and showed negative responses for mutagenicity and genotoxicity in mice. Further, Ac-CF displayed antigenotoxic effects by decreasing the oxidative DNA damage induced by hydrogen peroxide by greater than 50% in blood and liver. The antioxidant action detected in the in vitro assays demonstrated IC50 of 0.838 mg/ml in the xanthine/hypoxanthine assay and IC50 of 28.17 µg/ml in the DPPH assay. In conclusion, Ac-CF did not induce mutagenic and genotoxic effects and was able to protect DNA against oxidative damage in vivo, suggesting that this fraction may not pose genetic risks, although further toxicology assays are necessary.


Subject(s)
Antioxidants/toxicity , Bignoniaceae/chemistry , Medicine, Traditional , Mutagens/toxicity , Plant Extracts/toxicity , Plants, Medicinal/chemistry , Administration, Oral , Animals , Antioxidants/classification , Antioxidants/metabolism , Biotransformation , Bone Marrow Cells/drug effects , Comet Assay , DNA/drug effects , Dose-Response Relationship, Drug , Free Radical Scavengers/analysis , Liver/drug effects , Male , Mice , Mice, Inbred Strains , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutagens/classification , Mutagens/metabolism , Plant Extracts/classification , Plant Extracts/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
7.
Article in English | MEDLINE | ID: mdl-22548121

ABSTRACT

Plant extracts have a long history to be used in folk medicine. Cassia alata extracts are known to exert antibacterial activity but details on compounds and mechanism of action remain poorly explored. We purified and concentrated the aqueous leaf extract of C. alata by reverse phase-solid phase extraction and screened the resulting CaRP extract for antimicrobial activity. CaRP extract exhibited antimicrobial activity for Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, and Bacillus subtilis. CaRP also inhibited biofilm formation of S. epidermidis and P. aeruginosa. Several bacterial growth-inhibiting compounds were detected when CaRP extract was fractionated by TLC chromatography coupled to bioautography agar overlay technique. HPLC chromatography of CaRP extract yielded 20 subfractions that were tested by bioautography for antimicrobial activity against S. aureus and S. epidermidis. Five bioactive fractions were detected and chemically characterized, using high-resolution mass spectrometry (qTOF-MS/MS). Six compounds from four fractions could be characterized as kaempferol, kaempferol-O-diglucoside, kaempferol-O-glucoside, quercetin-O-glucoside, rhein, and danthron. In the Salmonella/microsome assay CaRP showed weak mutagenicity (MI < 3) only in strain TA98, pointing to a frameshift mutation activity. These results indicate that C. alata leaf extract contains a minimum of 7 compounds with antimicrobial activity and that these together or as single substance are active in preventing formation of bacterial biofilm, indicating potential for therapeutic applications.

8.
J Photochem Photobiol B ; 96(2): 117-29, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19464923

ABSTRACT

The photoprotective effect of the methanolic extracts of three Antarctic plant species - Deschampsia antarctica Desv., Colobanthus quitensis (Kunth) Bartl., and Polytrichum juniperinum Hedw. against UV-induced DNA damage was investigated in hamster lung fibroblasts (V79 cells) and in a biomonitor organism Helix aspersas, using comet assay. The protective, mutagenic, and antimutagenic profiles of these extracts were also evaluated using haploid strains of the simple eukaryote Saccharomyces cerevisiae, and antioxidant activity were investigated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, as well as the hypoxanthine/xanthine oxidase assay. At the concentration range employed, the extracts were not cytotoxic or mutagenic to S. cerevisiae. In addition, the treatment with these extracts enhanced survival, and decreased induced reverse, frameshift, and forward mutations in a dose-response manner in all UVC doses employed. The plants extracts did not generate DNA strand breaks in V79 cells, and the treatment significantly decreased DNA damage induced by UVC. Extracts significantly decreased UVC-induced lipid peroxidation in V79 cells, showing a clear antioxidant property. Moreover, results of comet assay in V79 cells, employing Fpg, Endo III, and Endo V enzymes, demonstrated significant reduction of UVC-induced DNA damage after pre-incubation with these extracts. The treatment with all tested extracts were much less efficient against UVC-induced cytotoxicity in the yeast strain defective in photolyase as compared to the wild type strain, suggesting that this DNA repair pathway is stimulated by substances present in the extracts. All extracts showed a significant inhibitory effect in the hypoxanthine/xanthine oxidase assay, and they had the ability to scavenge DPPH. In H. aspersas, the treatment was able to protect against UVC-induced damage. In conclusion, D. antarctica, C. quitensis, and P. juniperinum extracts present photoprotective properties, which can be attributed to molecules, such as flavonoids and carotenoids, which act as UV-absorbing molecules and as antioxidants, as well as stimulate DNA-repair processes.


Subject(s)
DNA Damage/drug effects , Models, Biological , Plant Extracts/pharmacology , Ultraviolet Rays , Animals , Antarctic Regions , Cell Line , Cells, Cultured , Cricetinae , DNA Damage/radiation effects , Helix, Snails
SELECTION OF CITATIONS
SEARCH DETAIL