Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Sci Rep ; 10(1): 1125, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980663

ABSTRACT

Arising from the ablation of the cytoskeletal protein dystrophin, Duchenne Muscular Dystrophy (DMD) is a debilitating and fatal skeletal muscle wasting disease underpinned by metabolic insufficiency. The inability to facilitate adequate energy production may impede calcium (Ca2+) buffering within, and the regenerative capacity of, dystrophic muscle. Therefore, increasing the metabogenic potential could represent an effective treatment avenue. The aim of our study was to determine the efficacy of adenylosuccinic acid (ASA), a purine nucleotide cycle metabolite, to stimulate metabolism and buffer skeletal muscle damage in the mdx mouse model of DMD. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were treated with ASA (3000 µg.mL-1) in drinking water. Following the 8-week treatment period, metabolism, mitochondrial density, viability and superoxide (O2-) production, as well as skeletal muscle histopathology, were assessed. ASA treatment significantly improved the histopathological features of murine DMD by reducing damage area, the number of centronucleated fibres, lipid accumulation, connective tissue infiltration and Ca2+ content of mdx tibialis anterior. These effects were independent of upregulated utrophin expression in the tibialis anterior. ASA treatment also increased mitochondrial viability in mdx flexor digitorum brevis fibres and concomitantly reduced O2- production, an effect that was also observed in cultured immortalised human DMD myoblasts. Our data indicates that ASA has a protective effect on mdx skeletal muscles.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Muscular Dystrophy, Animal/drug therapy , Adenosine Monophosphate/therapeutic use , Animals , Calcium/analysis , Cell Line, Transformed , Collagen/analysis , Drug Evaluation, Preclinical , Electron Transport/drug effects , Humans , Lipids/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Organelle Biogenesis , Oxygen Consumption/drug effects , Superoxides/metabolism , Utrophin/biosynthesis , Utrophin/genetics
2.
PLoS One ; 10(6): e0128453, 2015.
Article in English | MEDLINE | ID: mdl-26083103

ABSTRACT

Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent a novel nutraceutical option for the management of IBD.


Subject(s)
Colitis/drug therapy , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Acute Disease , Administration, Oral , Animals , Body Weight/drug effects , Colitis/chemically induced , Colitis/pathology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Fucus/chemistry , Fucus/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/immunology , Neutrophil Infiltration/physiology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Spleen/pathology
3.
Redox Biol ; 4: 289-95, 2015.
Article in English | MEDLINE | ID: mdl-25625583

ABSTRACT

Coenzyme Q10 is a ubiquitous component of cellular membranes and belongs to the class of benzoquinones that mainly differ with regards to the length and composition of their hydrophobic tail. The characteristic quinone group can accept electrons from various biological sources and is converted by a one electron transfer to the unstable semiquinone or by a two electron transfer to the more stable hydroquinone. This feature makes CoQ10 the bona fide cellular electron transfer molecule within the mitochondrial respiratory chain and also makes it a potent cellular antioxidant. These activities serve as justification for its popular use as food supplement. Another quinone with similarities to the naturally occurring CoQ10 is idebenone, which shares its quinone moiety with CoQ10, but at the same time differs from CoQ10 by the presence of a much shorter, less lipophilic tail. However, despite its similarity to CoQ10, idebenone cannot be isolated from any natural sources but instead was synthesized and selected as a pharmacologically active compound in the 1980s by Takeda Pharmaceuticals purely based on its pharmacological properties. Several recent clinical trials demonstrated some therapeutic efficacy of idebenone in different indications and as a consequence, many practitioners question if the freely available CoQ10 could not be used instead. Here, we describe the molecular and pharmacological features of both molecules that arise from their structural differences to answer the question if idebenone is merely a CoQ10 analogue as frequently perpetuated in the literature or a pharmaceutical drug with entirely different features.


Subject(s)
Antioxidants/pharmacology , Biological Products/pharmacology , Electron Transport/drug effects , Mitochondria/drug effects , Ubiquinone/analogs & derivatives , Adenosine Triphosphate/biosynthesis , Antioxidants/chemistry , Biological Products/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Molecular Weight , NAD(P)H Dehydrogenase (Quinone)/metabolism , Structure-Activity Relationship , Ubiquinone/chemistry , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL