Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Gut ; 71(4): 807-821, 2022 04.
Article in English | MEDLINE | ID: mdl-33903148

ABSTRACT

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism
2.
Am J Pathol ; 187(6): 1273-1287, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28502695

ABSTRACT

Estrogen receptor α (ERα) regulates gene transcription through two activation functions (ERα-AF1 and ERα-AF2). We recently found that the protection conferred by 17ß-estradiol against obesity and insulin resistance requires ERα-AF2 but not ERα-AF1. However, the interplay between the two ERα-AFs is poorly understood in vivo and the metabolic influence of a specific ERα-AF1 action remains to be explored. To this end, wild-type, ERα-deficient, or ERα-AF1-deficient ovariectomized female mice were fed a high-fat diet and concomitantly administered with vehicle or tamoxifen, a selective ER modulator that acts as a ERα-AF1 agonist/ERα-AF2 antagonist. In ovariectomized wild-type mice, tamoxifen significantly reduced food intake and totally prevented adiposity, insulin resistance, and steatosis. These effects were abolished in ERα-deficient and ERα-AF1-deficient mice, revealing the specific role of ERα-AF1 activation. Finally, hepatic gene expression changes elicited by tamoxifen in wild-type mice were abrogated in ERα-AF1-deficient mice. The combination of pharmacologic and transgenic approaches thus indicates that selective ERα-AF1 activation by tamoxifen is sufficient to elicit metabolic protection, contrasting with the specific requirement of ERα-AF2 in the metabolic actions of 17ß-estradiol. This redundancy in the ability of the two ERα-AFs to separately mediate metabolic prevention strikingly contrasts with the contribution of both ERα-AFs in breast cancer proliferation, shedding new light on the therapeutic potential of selective ER modulation.


Subject(s)
Estrogen Receptor alpha/physiology , Fatty Liver/prevention & control , Insulin Resistance/physiology , Obesity/prevention & control , Selective Estrogen Receptor Modulators/therapeutic use , Animals , Diet, High-Fat , Drug Evaluation, Preclinical/methods , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Gene Expression Regulation/drug effects , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Ovariectomy , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Weight Gain/drug effects
3.
Endocrinology ; 157(6): 2533-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27105385

ABSTRACT

Estrogen receptor-α (ERα) acts primarily in the nucleus as a transcription factor involving two activation functions, AF1 and AF2, but it can also induce membrane-initiated steroid signaling (MISS) through the modulation of various kinase activities and/or secondary messenger levels. Previous work has demonstrated that nuclear ERα is required for the protective effect of the estrogen 17ß-estradiol (E2), whereas the selective activation of ERαMISS is sufficient to confer protection in cortical but not cancellous bone. The aim of this study was to define whether ERαMISS is necessary for the beneficial actions of chronic E2 exposure on bone. We used a mouse model in which ERα membrane localization had been abrogated due to a point mutation of the palmitoylation site of ERα (ERα-C451A). Alterations of the sex hormones in ERα-C451A precluded the interpretation of bone parameters that were thus analyzed on ovariectomized and supplemented or not with E2 (8 µg/kg/d) to circumvent this bias. We found the beneficial action of E2 on femoral bone mineral density as well as in both cortical and cancellous bone was decreased in ERα-C451A mice compared with their wild-type littermates. Histological and biochemical approaches concurred with the results from bone marrow chimeras to demonstrate that ERαMISS signaling affects the osteoblast but not the osteoclast lineage in response to E2. Thus, in contrast to the uterine and endothelial effects of E2 that are specifically mediated by nuclear ERα and ERαMISS effects, respectively, bone protection is dependent on both, underlining the exquisite tissue-specific actions and interactions of membrane and nuclear ERα.


Subject(s)
Bone and Bones/drug effects , Cancellous Bone/drug effects , Cortical Bone/drug effects , Femur/drug effects , Animals , Bone and Bones/cytology , Cancellous Bone/cytology , Cortical Bone/cytology , Estradiol/pharmacology , Estrogens/pharmacology , Female , Femur/cytology , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Ovariectomy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL