Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Food Chem ; 446: 138851, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428080

ABSTRACT

The quality of white tea (WT) is impacted by selected tea cultivars. To explore the organoleptic quality of a recently-discovered WT ("Caicha", CC), HS-SPME/GC-MS and UPLC were employed to identify volatile and non-volatile compounds in tea samples. Multiple statistical methods demonstrated the distinctions between CC and four mainstream WT varieties from main producing areas. CC exhibited abundant volatile alcohol, terpenoids, ketone, aldehyde and ester, as well as non-volatile lignans and coumarins, phenolic acids and low-molecular carbohydrates. These substances combinedly contributed to the flavor attributes of CC, characterized by an intense herbal/citrus-like cleanness and flower/fruit-like sweetness, scarce in existing commercial WT varieties. Sensory evaluation corroborated these findings. In conclusion, we have processed a new tea variety (CC) with WT manufacturing technology, and discovered the unique cleanness and sweetness of it. This study enriches the raw material database for WT production and blending, and boosts the development of more premium WT varieties.


Subject(s)
Camellia sinensis , Lignans , Volatile Organic Compounds , Tea/chemistry , Camellia sinensis/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods
2.
Food Res Int ; 173(Pt 2): 113461, 2023 11.
Article in English | MEDLINE | ID: mdl-37803791

ABSTRACT

The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Tea/chemistry , Chemometrics , Flavonols/analysis , Amino Acids/metabolism , Glycosides/analysis , Acids , Alcohols/analysis , Gallic Acid/analysis , Glucosides/metabolism , Ketones/analysis
3.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35164205

ABSTRACT

The yellowing process is the crucial step to form the characteristic sensory and chemical properties of yellow tea. To investigate the chemical changes and the associations with sensory traits during yellowing, yellow teas with different yellowing times (0-13 h) were prepared for sensory evaluation and chemical analysis. The intensities of umami and green-tea aroma were reduced whereas sweet taste, mellow taste and sweet aroma were increased under long-term yellowing treatment. A total of 230 chemical constituents were determined, among which 25 non-volatiles and 42 volatiles were the key chemical contributors to sensory traits based on orthogonal partial least squares discrimination analysis (OPLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. The decrease in catechins, flavonol glycosides and caffeine and the increase in certain amino acids contributed to the elevated sweet taste and mellow taste. The sweet, woody and herbal odorants and the fermented and fatty odorants were the key contributors to the characteristic sensory feature of yellow tea with sweet aroma and over-oxidation aroma, including 7 ketones, 5 alcohols, 1 aldehyde, 5 acids, 4 esters, 5 hydrocarbons, 1 phenolic compound and 1 sulfocompound. This study reveals the sensory trait-related chemical changes in the yellowing process of tea, which provides a theoretical basis for the optimization of the yellowing process and quality control of yellow tea.


Subject(s)
Color , Taste , Tea/chemistry , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis
4.
Acta Otolaryngol ; 141(12): 1055-1062, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34802365

ABSTRACT

BACKGROUND: Higher probe tone frequencies have been shown to increase the elicitation rates in electrically evoked stapedius reflex threshold (eSRT) measurements. OBJECTIVES: To determine the optimal probe tone frequency for contralateral eSRT measurements at individual electrodes in children with unilateral cochlear implants and to assess the relationship between eSRTs for this frequency and most comfortable levels (M-levels). MATERIALS AND METHODS: Contralateral eSRT measurements with three probe tone frequencies (226, 678, and 1000 Hz) at individual electrodes were performed on 26 paediatric Advanced Bionics cochlear implant recipients. RESULTS: The elicitation rates of eSRTs for 226, 678, and 1000 Hz probe tones were 73.08% (57/78), 88.46% (69/78), and 88.46% (69/78), respectively. The average eSRT for the 1000 Hz probe tone was significantly lower than those for 226 and 678 Hz probe tones (p<.001 and p=.009, respectively). ESRTs for the 1000 Hz probe tone and M-levels were significantly correlated at all tested electrodes (all p<.001). CONCLUSIONS AND SIGNIFICANCE: The optimal probe tone frequency for contralateral eSRT measurement at individual electrodes in children with unilateral cochlear implants is 1000 Hz. ESRTs for the 1000 Hz probe tone are significantly correlated with M-levels and can be used to guide the M-levels setting in these children.


Subject(s)
Acoustic Stimulation/methods , Cochlear Implants , Evoked Potentials, Auditory , Reflex, Acoustic/physiology , Action Potentials , Child , Child, Preschool , Electric Stimulation/methods , Female , Humans , Male
5.
Food Chem ; 362: 130257, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34118510

ABSTRACT

The sensory features of white peony teas (WPTs) significantly change with storage age; however, their comprehensive associations with composition are still unclear. This study aimed to clarify the sensory quality-related chemical changes in WPTs during storage. Liquid chromatography-tandem mass spectrometry based on widely targeted metabolomics analysis was performed on WPTs of 1-13 years storage ages. Weighted gene co-expression network analysis (WGCNA) was used to correlate metabolites with sensory traits including color difference values and taste attributes. 323 sensory trait-related metabolites were obtained from six key modules via WGCNA, verified by multiple factor analysis. The decline and transformation of abundant flavonoids, tannins and amino acids were related to the reduced astringency, umami and increased browning of tea infusions. In contrast, the total contents of phenolic acids and organic acids increased with storage. This study provides a high-throughput method for the association of chemical compounds with various sensory traits of foods.


Subject(s)
Metabolomics , Paeonia/chemistry , Taste , Tea/chemistry , Amino Acids/analysis , Astringents/analysis , Chromatography, Liquid , Flavonoids/analysis , Food Handling/standards , Hydroxybenzoates/analysis , Mass Spectrometry , Time
6.
Chem Commun (Camb) ; 56(13): 1956-1959, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31956868

ABSTRACT

Herein, we report a pH stimulus-disaggregated BODIPY sensitizer (PTS) with low background-toxicity for achieving activated photodynamic/photothermal tumor therapy. Both the photodynamic and photothermal properties of PTS can be activated under acidic conditions, and PTS exhibits excellent antitumor properties, which is revealed by both in vitro and in vivo tests.


Subject(s)
Boron Compounds/chemistry , Photosensitizing Agents/chemistry , Animals , Boron Compounds/pharmacology , Boron Compounds/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration , Light , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Transplantation, Heterologous
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117697, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31699592

ABSTRACT

White tea is a special tea product with increasing market demand. The assessment of white tea quality is mainly based on panel sensory by sensory evaluation experts, which is time costly and is limited by many uncertainties. This study established a rapid and accurate method for classification of white teas produced from buds and young leaves and that produced from mature leaves and shoots using near-infrared spectroscopy (NIR). Back propagation neural network modelling and support vector machine (SVM) modelling were compared with six pre-processing methods. The best performance was provided by SVM with particle swarm optimization combined with Savitzky-Golay filter pre-processing method, achieving the accuracy of 98.92% in test samples. The NIR-related chemical compounds of two categories of white teas produced from fresh leaves with different maturity were analyzed, including catechins, alkaloids, amino acids and flavonol glycosides. Compared with chemical component concentration, NIR absorbance had a distinct advantage in quick classification of white teas based on the principal components analysis. In addition, the sensory characteristics of two categories white teas produced from fresh leaves with different maturity were also assessed by panelist. The result showed that characteristics of "umami-like" and "smooth" were more likely present in white teas produced from buds and young leaves, while "woody" and "coarse" characteristics were usually present in white teas produced from mature leaves and shoots. Thus, NIR technique is a rapid and reliable method for discrimination of white teas produced from fresh leaves with different maturity, and is a potential method to discriminate sensory characteristics of white teas.


Subject(s)
Plant Leaves/chemistry , Spectroscopy, Near-Infrared/methods , Tea/chemistry , Models, Molecular , Principal Component Analysis , Support Vector Machine
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 254-262, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30121024

ABSTRACT

Special-grade green tea is a premium tea product with the best rank and high value. Special-grade green tea is normally classified by panel sensory evaluation which is time and sample costly. Near-infrared spectroscopy is considered as a promising rapid and non-destructive analytical technique for food quality evaluation and grading. This study established a discrimination method of special-grade flat green tea using Near-infrared spectroscopy. Full spectrum was used for partial least squares (PLS) modelling to predict the sensory scores of green tea, while specific spectral regions were used for synergy interval-partial least squares (siPLS) modelling. The best performance was achieved by the siPLS model of MSC + Mean Centering pretreatments and subintervals from 15 intervals. The optimal model was used to discriminate special-grade flat green tea with the prediction accuracy of 97% and 93% in the cross-validation and external validation respectively. The chemical compositions of green tea samples were also analyzed, including polyphenols (total polyphenols, catechins and flavonol glycosides), alkaloids and amino acids. Principal components analysis result showed that there is potential correlation between specific spectral regions and the presence of polyphenols and alkaloids. Thus, NIR technique is a practical method for rapid and non-destructive discrimination of special-grade flat green tea with chemical support.


Subject(s)
Spectroscopy, Near-Infrared/methods , Tea/chemistry , Least-Squares Analysis , Polyphenols/analysis , Principal Component Analysis , Reproducibility of Results
9.
ACS Appl Mater Interfaces ; 10(41): 35615-35622, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30251829

ABSTRACT

van der Waals p-n heterostructures based on p-type black phosphorus (BP) integrated with other two-dimensional (2D) layered materials have shown potential applications in electronic and optoelectronic devices, including logic rectifiers and polarization-sensitive photodetectors. However, the engineering of carriers transport anisotropy, which is related to the linear dichroism, have not yet been investigated. Here, we demonstrate a novel van der Waals device of orientation-perpendicular BP homojunction based on the anisotropic band structures between the armchair and zigzag directions. The structure exhibits good gate-tunable diode-like rectification characteristics caused by the barrier between the two perpendicular crystal orientations. Moreover, we demonstrate that the unique mechanisms of the polarization-sensitivity properties of this junction are involved with the linear dichroism and the anisotropic carriers transport engineering. These results were verified by the scanning photocurrent images experiments. This work paves the way for 2D anisotropic layered materials for next-generation electronic and optoelectronic devices.


Subject(s)
Phosphorus/chemistry , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL