Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Altern Ther Health Med ; 29(5): 242-254, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052973

ABSTRACT

Context: The Da-yuan-yin (DYY) decoction is a classical prescription of traditional Chinese medicine that has antipyretic and anti-inflammatory effects. Network Pharmacology (NP) is an emerging discipline based on system-biology theory and biosystem network analysis that researchers can use to predict drug-action targets and mechanisms. Objective: The study intended to use NP evaluate the protective effects of the fifth eluting fraction of the supernatant of the DYY decoction (DYY-5) for mice induced with acute lung injury (ALI) using lipopolysaccharide (LPS) and to explore DYY-5's mechanisms. Design: The research team performed an animal study. Setting: The study took place at the College of Pharmaceutical Science at Soochow University in Suzhou, China. Animals: The animals were 42 male Balb/c mice, about 20 to 25 g in weight. Intervention: The research team: instilled 2 mg/kg of LPS intratracheally (i.t.) to induce ALI. The team divided the mice into seven groups of six mice: (1) a control group; (2) a negative control group-the DYY-5 group with mice treated only with a high dosage, 60 mg/kg, of DYY-5 to investigate the effects of DYY-5 on normal mice; (3) the positive control group, the LPS group, with induced ALI but no treatments; (4) the LPS+60 mg/kg-DYY-5 group with induced ALI treated with a high dosage of DYY-5; (5) the LPS+30 mg/kg-DYY-5 group with induced ALI treated with a medium dosage of DYY-5; (6) the LPS+15 mg/kg-DYY-5 group with induced ALI treated with a low dosage of DYY-5; and (7) a reference drug control group, the LPS+DXM group, with induced ALI treated with 5 mg/kg of dexamethasone (DXM). Outcome Measures: The research team: (1) determined the chemical components of DYY; (2) identified the anticomplementary activities of DYY-5; (3) took lung specimens, serum, and bronchoalveolar lavage fluid (BALF) from the mice for histopathological examination, Western blot, and biochemical analysis; (4) measured total protein concentrations and lung W/D ratios; (5) measured the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) using quantitative real-time polymerase chain reaction (PCR); (6) measured the levels of pro-inflammatory and anti-inflammatory factors, the activity of myeloperoxidase (MPO) and superoxide dismutase (SOD), and the levels of complements, including complements 3 (C3), C3c, C5a, C5aR1, and C5b-9, using kits; (7) analyzed the levels of nuclear factor-kappa B (NF-κB) and IkB kinase (IKK) using Western blot; and (8) used network pharmacology (NP) to predict DYY-5's mechanisms and potential targets. Results: The study's results were consistent with the NP analysis, which reflected the multitarget and multipathway characteristics of DYY-5 in alleviating ALI. The LPS+30 mg/kg-DYY-5 group had significantly lower lung wet-to-dry (W/D) ratios and total protein concentrations in BALF than the LPS group did, with P < .01 and P < .0001, respectively as did the LPS+60 mg/kg-DYY-5 group (both P < .0001). The 60 mg/kg of DYY-5 compared to the LPS group: (1) regulated the levels tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-1 beta (IL-1ß), with all P < .0001, anti-inflammatory factors-IL-4 (P < .05), IL-10 (P < .001), and IL-13 (P < .001); (2) increased the activity of SOD (P < .0001) and decreased the activity of MPO (P < .0001) and the expressions of iNOS and COX-2 mRNA (both P < .01); (3) blocked the activation of NF-κB and IKK; and (4) alleviated the pathological changes in the lung tissue, by reducing the depositions of C3c and decreasing the levels of C3, C5a and C5aR1 (all P < .0001), C5b-9 (P < .001) and C3c (P < .01) in serum. Conclusions: The protective effects of DYY-5 on ALI were related to antioxidation, anti-complementary activities, and regulation of inflammatory factors through the IKK/NF-κB signal pathway. DYY-5 may be useful as a potential therapeutic agent for treating ALI in clinics.


Subject(s)
Acute Lung Injury , NF-kappa B , Male , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Lipopolysaccharides , Cyclooxygenase 2/adverse effects , Complement Membrane Attack Complex/adverse effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred BALB C , RNA, Messenger , Superoxide Dismutase
2.
J Pharmacol Sci ; 140(3): 228-235, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31358372

ABSTRACT

Acute lung injury (ALI) results from various factors including uncontrolled pulmonary inflammation, oxidative damage and the over-activated complement with high mortality rates. Jaceosidin was a flavonoid compound with significant anti-complement activity. We aimed to investigate the therapeutic effects of Jaceosidin on ALI induced by lipopolysaccharide (LPS). Mice were orally administrated with Jaceosidin (15, 30 and 60 mg/kg) after LPS challenge. 24 h after LPS challenge, Jaceosidin could significantly decrease the lung wet-to-dry weight (W/D) ratio and the protein concentration in bronchoalveolar lavage fluid (BALF). Jaceosidin could down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), together with up-regulation the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) in BALF. Jaceosidin could significantly decrease the levels of myeloperoxidase (MPO), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB), COX-2 mRNA and NF-κB p65 mRNA together with increasing the activity of catalase (CAT). Additionally, Jaceosidin attenuated lung histopathological changes, inhibited the expressions of COX-2 and NF-κB p65 and reduced complement deposition with decreasing the levels of complement 3 (C3) and complement 3c (C3c) in serum. These data suggest that Jaceocidin may dampen the inflammatory response and decrease the levels of complement together with the antioxidant activity following LPS-induced ALI.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Flavonoids/pharmacology , Lipopolysaccharides/pharmacology , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cyclooxygenase 2/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Peroxidase/metabolism , Plant Extracts/pharmacology , Pneumonia/drug therapy , Pneumonia/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL