Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Pest Manag Sci ; 78(9): 3859-3870, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35524967

ABSTRACT

BACKGROUND: Tyrosine hydroxylase (TH), a melanin synthesis pathway enzyme hydroxylating tyrosine into 3,4-dihydroxyphenylalanine, is involved in the pigmentation and sclerotization of insect cuticles. However, the role of TH in 28-spotted potato ladybeetle (Henosepilachna vigintioctopunctata), an emerging pest of the solanaceous crops has been explored to a limited extent. In this study, we integrated dietary RNA interference (RNAi) and hematoxylin and eosin (H&E) staining with various bioassays to analyze the role of tyrosine hydroxylase (HvTH) throughout the developmental processes of Henosepilachna vigintioctopunctata. RESULTS: The results revealed that ingestion of dsHvTH led to cuticle tanning impairment, arrested larval feeding in the first and second instars of Henosepilachna vigintioctopunctata, and subsequently resulted in 100% mortality. The H&E staining assays revealed that dsHvTH prevented new abdominal cuticle formation. A pharmacological study using 3-iodo-tyrosine (3-IT), a HvTH inhibitor, disrupted larval-larval-pupal cuticle tanning during the third-fourth instar larval development and eventually failed to pupate. Similarly, dsHvTH fed to fourth instars hindered larval-pupal-adult cuticle tanning, and the eclose adults were 100% malformed. Ingestion of dsHvTH or 3-IT significantly down-regulated HvTH, HvDDC, Hvebony, and Hvlaccase2 expression and reduced dopamine levels. Finally, HvTH silencing in adult females substantially reduced the offspring hatching rates. CONCLUSIONS: The collective results of the study suggested that HvTH plays conserved roles in larval-pupal-adult cuticle melanization and sclerotization while exhibiting a novel function in Henosepilachna vigintioctopunctata reproduction. © 2022 Society of Chemical Industry.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Coleoptera/metabolism , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Larva , Pupa , RNA Interference , Reproduction , Solanum tuberosum/metabolism , Tyrosine/genetics , Tyrosine/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
2.
Pestic Biochem Physiol ; 182: 105029, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35249644

ABSTRACT

Fushi-tarazu factor 1 (FTZF1) is an ecdysone-inducible transcription factor that plays a vital role during the metamorphosis in insects. In this study, we functionally characterized HvFTZ-F1 in H. vigintioctopunctata, a dreadful solanaceous crop pest, by using a dietary RNA interference technique. The HvFTZ-F1 expression levels were elevated in the 1st and 2nd-instars before molting and declined immediately after ecdysis. The HvFTZ-F1 silencing led to high mortality in the 1st instars, while the expression of the osmosis-regulative gene, HvAQPAn.G, was significantly increased in the 1st instars. HvFTZ-F1 silencing downregulated the Halloween and 20E-related genes, decreased the ecdysteroids titer, suppressed the expression of pigmentation-related genes, and reduced the catecholamines titer. In the 4th instars, HvFTZ-F1 silencing caused 100% mortality by arresting the development at the prepupal stage and preventing new abdominal cuticle formation. In the female adults, HvFTZ-F1 silencing caused an evident decrease in fecundity, prolonged the pre-oviposition period, reduced the number of eggs and hatching rate, severely atrophied the ovaries. Moreover, the 20E-related genes and the dopamine synthesis genes were suppressed in the dsHvFTZ-F1-treated females. Overall, our results revealed that HvFTZ-F1 regulates ecdysis, pupation, and reproduction in H. vigintioctopunctata, thereby could be a promising molecular target for the development of RNAi-based biopesticides to control H. vigintioctopunctata.


Subject(s)
Molting , Solanum tuberosum , Animals , Drugs, Chinese Herbal , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Molting/genetics , RNA Interference , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reproduction , Solanum tuberosum/metabolism
3.
Pest Manag Sci ; 78(9): 3871-3879, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34398523

ABSTRACT

BACKGROUND: Use of RNA interference (RNAi) technology in effective pest management has been explored for decades. Henosepilachna vigintioctopunctata is a major solanaceous crop pest in Asia. In this study, the effects of the RNAi-mediated silencing of clathrin heavy chain in H. vigintioctopunctata were investigated. RESULTS: Feeding either the in vitro-synthesized or the bacterially expressed double-stranded RNAs (dsRNAs) significantly impaired the normal physiology of H. vigintioctopunctata instars and adults. However, the bacterially expressed dsHvChc caused higher mortality than the in vitro-synthesized ones in the larvae and adults. Moreover, on evaluating the potential risk of dsHvChc on Propylea japonica, significant transcriptional effects of dsHvChc1 were observed, while the organismal level effects were not significant. On the contrary, dsHvChc2 did not affect P. japonica at either level. A similar test revealed significant transcriptional effects of dsPjChc1 on H. vigintioctopunctata, while staying ineffective at the organismal levels. Conversely, dsPjChc2 did not affect H. vigintioctopunctata at either level. Importantly, no effect of dsPjChc1 exposure on H. vigintioctopunctata suggested that other factors besides the 21-nucleotide (nt) matches between sequences were responsible. Finally, ingestion of dsHvmChc1 derived from H. vigintioctomaculata, containing 265-nt matches with dsHvChc1, caused 100% mortality in H. vigintioctopunctata. CONCLUSIONS: We conclude that (i) species with numerous 21-nt matches in homologous genes are more likely to be susceptible to dsRNA; (ii) dsRNA can be safely designed to avoid negative effects on non-target organisms at both transcriptional and organismal levels; (iii) HvChc can be used as an efficient RNAi target gene to effectively manage H. vigintioctopunctata. © 2021 Society of Chemical Industry.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Clathrin Heavy Chains/genetics , Clathrin Heavy Chains/pharmacology , Coleoptera/physiology , RNA Interference , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , Solanum tuberosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL