Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Poult Sci ; 103(6): 103770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652955

ABSTRACT

Alpiniae oxyphylla fructus was extensively utilized both as dietary supplements and traditional herbal medicines for healthcare functions and has exhibited a positive impact on animal health. The present study aimed to investigate the effects of Alpiniae oxyphyllae fructus powder (AOP) on production performance, egg quality, egg yolk fatty acid composition, reproductive hormones, antioxidant capacity, immunity, anti-apoptosis ability, and intestinal health in hens. A total of 252 Hainan Wenchang laying hens (30-wk-old) were randomly divided into 3 groups with 6 replicates, a basic diet with 0 (CON), 1 g/kg AOP (AOP1), and 3 g/kg (AOP3) mixed AOP. The AOP supplementation was found to decrease the feed conversion ratio and embryo mortality but to increase the laying rate, average egg weight, and oviduct index linearly (p < 0.05). Furthermore, AOP treatment reduced the total saturated fatty acids and palmitic acid (C16:0) in the egg yolk while increasing eggshell strength, albumen height, and Haugh unit (p < 0.05). The serum levels of albumin and phosphorus were increased, whereas total cholesterol, triglycerides, and glucose levels decreased as a result of AOP treatment (p < 0.05). The inclusion of 3 g/kg AOP had higher 17 ß-estradiol and follicle-stimulating hormone levels in serum, while it up-regulated follicle-stimulating hormone receptor and gonadotropin-releasing hormone expression in ovary (p < 0.05). Dietary AOP strengthened the expression of nuclear factor erythroid2-related factor 2 in ovary and increased the activity of superoxide dismutase and total antioxidant capacity, but had a lower malondialdehyde content in serum (p < 0.05). AOP at 3 g/kg up-regulated superoxide dismutase 1 and heme oxygenase 1 expression in jejunum and ovary (p < 0.05). Meanwhile, AOP supplementation down-regulated p53 expression in ovary and bcl-2-associated x expression in liver and jejunum, especially 3 g/kg of AOP had lower caspase-8 concentrations and down-regulated bcl-2-associated x and caspase-3 expression in ovary (p < 0.05). AOP treatment increased serum levels of immunoglobulin A and immunoglobulin M and upregulated interleukin-4 expression in the liver, while decreasing interleukin-1ß expression in liver and ovary and nod-like receptor protein 3 expression in jejunum (p < 0.05). Dietary AOP increased the ratio of villus height to crypt depth but decreased crypt depth in jejunum, especially when 1 g/kg AOP increased expression levels of occludin, mucin-2, peptide-transporter 1, and sodium glucose cotransporter 1 in jejunum (p < 0.05). AOP treatment altered the composition of the cecal microbial community, as evidenced by increased abundance of Oscillospira and Phascolarctobacterium and reduced richness of Clostridiaceae_Clostridium. Dietary AOP supplementation enriched lipid, amino acid, and propanoate metabolism. Spearman's correlation analysis revealed that the genera Oscillospira, Blautia, and Megasphaera were related to laying performance and intestinal integrity. In brief, supplementation of AOP, especially at 3 g/kg, could improve production performance and egg quality of hens via modulating reproductive hormones, antioxidant capacity, immunity, intestinal barrier, and cecal microbiota. Overall, the present work recommends the dietary inclusion of AOP as a beneficial additive for improving the performance of hens.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Animals , Chickens/physiology , Chickens/immunology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Antioxidants/metabolism , Random Allocation , Alpinia/chemistry , Intestines/drug effects , Intestines/physiology , Fruit/chemistry , Ovum/drug effects , Ovum/physiology , Ovum/chemistry , Egg Yolk/chemistry , Reproduction/drug effects , Dose-Response Relationship, Drug
2.
Phytomedicine ; 128: 155415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503151

ABSTRACT

BACKGROUND: Chichoric acid (CA) is a major active ingredient found in chicory and Echinacea. As a derivative of caffeic acid, it has various pharmacological effects. PURPOSE: Due to the unclear etiology and disease mechanisms, effective treatment methods for ulcerative colitis (UC) are currently lacking. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and dextran sulfate sodium (DSS)-induced mouse UC models. METHODS: Folate-chicory acid liposome was prepared using the double emulsion ultrasonic method with the aim of targeting folate receptors specifically expressed on macrophages. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and DSS -induced mouse UC models. Furthermore, the effects of the liposomes on macrophage polarization and their underlying mechanisms in UC were explored. RESULTS: The average particle size of folate-chicory acid liposome was 120.4 ± 0.46 nm, with an encapsulation efficiency of 77.32 ± 3.19 %. The folate-chicory acid liposome could alleviate macrophage apoptosis induced by LPS, decrease the expression of inflammatory factors in macrophages, enhance the expression of anti-inflammatory factors, inhibit macrophage polarization towards the M1 phenotype, and mitigate cellular inflammation in vetro. In vivo test, folate-chicory acid liposome could attenuate clinical symptoms, increased colon length, reduced DAI scores, CMDI scores, and alleviated the severity of colonic histopathological damage in UC mice. Furthermore, it inhibited the polarization of macrophages towards the M1 phenotype in the colon and downregulated the TLR4/NF-κB signaling pathway, thereby ameliorating UC in mice. CONCLUSION: Folate-chicory acid liposome exhibited a uniform particle size distribution and high encapsulation efficiency. It effectively treated UC mice by inhibiting the polarization of macrophages towards the M1 phenotype in the colon and downregulating the TLR4/NF-κB signaling pathway.


Subject(s)
Caffeic Acids , Colitis, Ulcerative , Folic Acid , Lipopolysaccharides , Liposomes , Macrophages , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Folic Acid/pharmacology , Folic Acid/chemistry , Folic Acid/analogs & derivatives , Toll-Like Receptor 4/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/drug effects , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Male , RAW 264.7 Cells , Disease Models, Animal , Dextran Sulfate , Succinates/pharmacology , Succinates/chemistry , Mice, Inbred C57BL , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology
3.
Phytomedicine ; 125: 155336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295660

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE: In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS: The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS: Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS: These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.


Subject(s)
Colitis, Ulcerative , Colitis , Forsythia , Animals , Mice , Polyphenols/pharmacology , Polyphenols/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
4.
Poult Sci ; 103(1): 103201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980727

ABSTRACT

Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-ß, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.


Subject(s)
Antioxidants , Interleukin-10 , Animals , Female , Antioxidants/metabolism , Interleukin-17 , Chickens/physiology , NF-E2-Related Factor 2/metabolism , Interleukin-2 , Superoxide Dismutase-1/metabolism , Dietary Supplements/analysis , Diet/veterinary , Hormones/metabolism , RNA, Messenger/metabolism , Animal Feed/analysis
5.
Poult Sci ; 102(7): 102714, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172360

ABSTRACT

This study aimed to investigate the effects of polyherbal mixtures (PHM) on growth performance, antioxidant capacities, immune function, and intestinal health in yellow-feathered broilers. PHM is composed of five traditional Chinese medicine herbs (Portulaca oleracea L., Radix Sophora flavescens, Thalictrum glandulosissimum, Terra flava usta, and Pogostemon cablin). A total of 270 one-day-old yellow-feathered broilers were randomly allotted into 3 treatments for a 42-d feeding trial, each with 6 replicates of 15 birds. The dietary treatments consisted of a basal diet (CON), a basal diet supplemented with 50 mg/kg chlortetracycline (CTC), and a basal diet supplemented with 1000 mg/kg PHM. The results showed that dietary PHM supplementation increased body weight, ADG, and decreased F/G compared to the CON. PHM also increased spleen index and mRNA expression of IL-4 (d 21), and thymus index, serum IgA (d 42) and IgG, IL-4 and sIgA in jejunal mucosa (d 21 and 42), but decreased serum IFN-γ and mRNA expression of IFN-γ (d 21 and 42). In addition, PHM increased serum SOD, GSH-Px (d 21 and 42) and T-AOC (d 42), but decreased the content of serum MDA (d 21), the up-regulated mRNA expression of GSH-Px, CAT (d 21), SOD and CAT (d 42). Furthermore, PHM also improved the intestinal epithelial barrier indicators by the up-regulated mRNA expression of CLDN-1, OCLN (d 21 and 42) and ZO-1 (d 21), and the increased of villus height and villus height to crypt depth in jejunum (d 42). The high-throughput sequencing results showed that dietary PHM supplementation increased the alpha diversity and relative abundance of Oscillospira and Ruminococcus (d 21) and Lactobacillus (d 42), whereas decreasing that of Enterococcus (d 21) compared with CON. PICRUSt analysis revealed that metabolic pathways of carbohydrate, energy, lipid, cofactors, and vitamins were significantly enriched in the PHM group. Spearman's correlation analysis revealed that the genera Lactobacillus, Enterococcus, Ruminococcus, Oscillospira, and Faecalibacterium were related to growth performance, intestinal integrity, immune-related factors, antioxidant indices, and tight junction proteins. In conclusion, the results indicated that dietary PHM supplementation improved growth performance and immune status of yellow-feathered broilers by enhancing antioxidant capacities, barrier function, and modulated jejunal microbial communities. PHM used in our study has the potential to replace prophylactic antibiotic use in poultry production systems.


Subject(s)
Antioxidants , Chickens , Animals , Animal Feed/analysis , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Immunity , Interleukin-4 , Jejunum/metabolism , RNA, Messenger , Superoxide Dismutase
6.
J Ethnopharmacol ; 307: 116221, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36754188

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant, commonly known as purple conical flower. It was widely used to treat skin inflammation and gastrointestinal diseases. AIM OF STUDY: Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease. Recent evidence shows that immune disorders are involved in the pathogenesis of UC. To evaluate the protective effect of Echinacea purpurea (L.) Moench exact (EE) on UC and explore the role of complement system in the treatment of UC. MATERIALS AND METHODS: UC model was induced in rats by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and then rats were administered with EE for 10 days. Collect colon tissues for analysis of relevant mechanisms. RESULTS: EE could reduce the weight loss and diarrhea of UC rats. In addition, EE could improve the integrity of intestinal epithelial barrier in UC rats. EE inhibited the level of proinflammatory cytokines and promoted the antioxidation. Furthermore, EE suppressed the expression of C3aR, CFB, CD55, TLR4 and NLRP3. CONCLUSION: These results indicate that EE may achieve therapeutic effect by inhibiting C3a/C3aR signal pathway, suggesting that EE may be used as a medicinal plant to alleviate UC.


Subject(s)
Colitis, Ulcerative , Echinacea , Animals , Rats , Colitis, Ulcerative/drug therapy , Colon , Inflammation/pathology , Signal Transduction , Trinitrobenzenesulfonic Acid , Complement C3a/metabolism
7.
Phytomedicine ; 110: 154645, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634382

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder in gastrointestinal tract. Shen Ling Bai Zhu San (SLBZS), which has a long history of use in Traditional Chinese Medicine (TCM), has been widely used to treat gastrointestinal diseases. The isolated fractions of TCM have also been proved to possess an important potential for treating diseases, which are due to their effective components. PURPOSE: In this study, we examined the possibility that SLBZS and its isolated active fractions may prevent DSS-induced colitis, and investigated the potential mechanisms by regulating genetic profile of colon. METHODS: Colitis mice were induced by 2.5% DSS for 7 days, and then SLBZS and different SLBZS extracts were administrated to protect the mice for 7 days. Body weight, diarrhea, bleeding in stool, colon length, spleen weight, cytokines of serum and colon and pathology of colon were assessed. The level of Ginsenoside Rg1, Re and Rb1 in different SLBZS extracts and qualitative analysis of n-butanol extract of SLBZS (S-Nb) was performed by HPLC and LC-MS, respectively. And the effects of S-Nb on the transcriptome in colitis were investigated. RESULTS: Our results showed that SLBZS and S-Nb significantly regained body weight, reduced DAI, splenomegaly and the length of colon and attenuated histological damage of the colon. Meanwhile, SLBZS and S-Nb markedly reduced the levels of TNF-α, IL-1ß and IL-6 and increased the level of IL-10 in serum and colon. These effects may be associated with the high levels of Ginsenoside Rg1, Re and Rb1 and rich variety of compounds in S-Nb including 6 ginsenosides, glycyrrhizin, L-tryptophan, and so on. Transcriptome analysis revealed that S-Nb selectively regulated 103 differentially expressed genes (DEGs), 36 of which were changed in DSS-induced mice. And the genes of Per2, Per3, Npy and Serpina3m were closely related to colitis and also restored by S-Nb with different extent. Remarkably, these DEGs modulated the biological functions of colitis mice, including extracellular region, response to external stimulus, MAPK signaling pathway and arginine and proline metabolism. CONCLUSIONS: These data indicated that SLBZS and S-Nb blunted DSS-induced colitis by modulating differentially expression gene profile and biological functions based on their ginsenosides and rich compounds.


Subject(s)
Colitis , Ginsenosides , Mice , Animals , Ginsenosides/pharmacology , 1-Butanol/pharmacology , Butanols/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colon/pathology , Chronic Disease , Gene Expression Profiling , Body Weight , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Cytokines
8.
Front Vet Sci ; 10: 1320469, 2023.
Article in English | MEDLINE | ID: mdl-38162476

ABSTRACT

This study aimed to evaluate the effects of Chinese herbal mixtures (CHMs) on productive performance, egg quality, immune status, anti-apoptosis ability, caecal microbiota, and offspring meconial microbiota in hens. A total of 168 thirty-week-old Wenchang breeder hens were randomly divided into two groups, with each group comprising six replicate pens of fourteen hens. The groups were fed a basal diet (CON group) and a basal diet with 1,000 mg/kg CHMs (CHMs group) for 10 weeks. Our results showed that dietary supplementation with CHMs increased the laying rate, average egg weight, hatch of fertile, and offspring chicks' weight while concurrently reducing the feed conversion ratio (FCR) and embryo mortality (p < 0.05). The addition of CHMs resulted in significant improvements in various egg quality parameters, including eggshell strength, albumen height, haugh unit, and the content of docosatetraenoic acid (C20:4n-6) in egg yolk (p < 0.05). The supplementation of CHMs had a greater concentration of IgA and IgG while decreasing the content of IL-6 in serum compared with the CON group (p < 0.05). Addition of CHMs to the diet increased the expression of Bcl-2 and IL-4 in liver and ovary, decreased the expression of IL-1ß, Bax, and Caspase-8 in jejunum and ovary, and decreased the expression of NF-κB in liver, jejunum, and ovary (p < 0.05). Moreover, dietary CHMs reduced the abundance of Desulfovibrio in caecal microbiota as well as decreased the abundance of Staphylococcaceae_Staphylococcus and Pseudomonadaceae_Pseudomonas in the offspring meconial microbiota (p < 0.05). In conclusion, the CHMs could improve productive parameters by enhancing immune status, anti-apoptosis capacity, and modulating the caecal microbiota of Wenchang breeder hens, as well as maintaining the intestinal health of the offspring chicks.

9.
Int J Biol Macromol ; 222(Pt A): 1127-1136, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191780

ABSTRACT

Shenling Baizhu San has beneficial effects on the metabolism of the gut microbiota, however, the mechanisms underlying microbiota metabolites mediated anti-inflammation signaling are not well understood. Previously, we have demonstrated that supplementation with Shenling Baizhu San alleviated antibiotic-associated diarrhea (AAD). The current study intends to investigate the dynamic modulation of Shenling Baizhu San polysaccharides (SP) on colitis from the gut microbiota metabolites perspective. Administration of SP effectively relieved colitis induced by DSS in mice, including alleviating body weight loss, the downregulation of colon proinflammatory mediators, and the promotion of intestinal injury repair. Whereas, the efficacy was eliminated by antibiotics, which demonstrated that the efficacy of SP was dependent on the gut microbiota. Fecal microbiota transplantation (FMT) showed that the efficacy of SP can be transferred to gut microbiota. Serum metabolomics analysis showed that supplementation with SP significantly promoted tryptophan metabolism, which was consistent with the changed structure of the gut microbiota, including Bacteroides, Bifidobacterium and Ruminococcus regulated by SP. Especially, the tryptophan metabolites-kynurenine (KYN) activated the expression of amplifying aryl-hydrocarbon receptor (AhR) and Cyp1A1 to promote IL-10 expression in colon. These data suggested that SP positively affected colitis in mice by regulating tryptophan metabolic function of their gut microbiota.


Subject(s)
Colitis , Drugs, Chinese Herbal , Mice , Animals , Tryptophan/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Drugs, Chinese Herbal/pharmacology , Colon , Polysaccharides/adverse effects , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , Disease Models, Animal
10.
Front Pharmacol ; 12: 737576, 2021.
Article in English | MEDLINE | ID: mdl-34899295

ABSTRACT

Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1ß, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/ß and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.

11.
Article in English | MEDLINE | ID: mdl-34630607

ABSTRACT

The aim of this study was to evaluate the effect of gut microbiota and antioxidation of Shenling Baizhu San (SLBZS) as a supplement in a rat model of ulcerative colitis (UC) induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Acute intestinal inflammation was induced in 40 male SD rats aged 4 weeks with 100 mg/kg TNBS, and then three dosages of SLBZS (0.5 g/kg, 1 g/kg, and 1.5 g/kg) were administered for eight days, respectively. Faecal microbiome composition was assessed by 16S rRNA high-throughput sequencing. The result indicated that SLBZS could reduce the diversity of gut microbiota and increased its abundance. At the genus level, the relative abundance of SCFAs producing bacteria including Prevotella and Oscillospira increased, while the relative abundance of opportunistic pathogens including Desulfovibrio and Bilophila decreased. Meanwhile, SLBZS could improve the lesions of colon and significantly reduce the level of MPO, increase the levels of SOD and CAT in rats' serum. These findings revealed that SLBZS was effective and possessed anticolitic activities in a rat model of UC by reducing macroscopical and microscopical colon injury, enhancing antioxidant capacity, and regulating gut microbiota.

12.
Oxid Med Cell Longev ; 2020: 1241894, 2020.
Article in English | MEDLINE | ID: mdl-32802257

ABSTRACT

There is a bidirectional relationship between inflammatory bowel disease (IBD) and depression/anxiety. Emerging evidences indicate that the liver may be involved in microbiota-gut-brain axis. This experiment focused on the role of melatonin in regulating the gut microbiota and explores its mechanism on dextran sulphate sodium- (DSS-) induced neuroinflammation and liver injury. Long-term DSS-treatment increased lipopolysaccharide (LPS), proinflammation cytokines IL-1ß and TNF-α, and gut leak in rats, breaking blood-brain barrier and overactivated astrocytes and microglia. Ultimately, the rats showed depression-like behavior, including reduction of sucrose preference and central time in open field test and elevation of immobility time in a forced swimming test. Oral administration with melatonin alleviated neuroinflammation and depression-like behaviors. However, melatonin supplementation did not decrease the level of LPS but increase short-chain fatty acid (SCFA) production to protect DSS-induced neuroinflammation. Additionally, western blotting analysis suggested that signaling pathways farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF 15) in gut and apoptosis signal-regulating kinase 1 (ASK1) in the liver overactivated in DSS-treated rats, indicating liver metabolic disorder. Supplementation with melatonin markedly inhibited the activation of these two signaling pathways and its downstream p38. As for the gut microbiota, we found that immune response- and SCFA production-related microbiota, like Lactobacillus and Clostridium significantly increased, while bile salt hydrolase activity-related microbiota, like Streptococcus and Enterococcus, significantly decreased after melatonin supplementation. These altered microbiota were consistent with the alleviation of neuroinflammation and metabolic disorder. Taken together, our findings suggest melatonin contributes to reshape gut microbiota and improves inflammatory processes in the hippocampus (HPC) and metabolic disorders in the liver of DSS rats.


Subject(s)
Central Nervous System Depressants/therapeutic use , Dextran Sulfate/adverse effects , Inflammation/drug therapy , Melatonin/therapeutic use , Metabolic Diseases/drug therapy , Animals , Central Nervous System Depressants/pharmacology , Male , Melatonin/pharmacology , Rats
13.
Front Pharmacol ; 11: 814, 2020.
Article in English | MEDLINE | ID: mdl-32547403

ABSTRACT

The traditional Chinese medicine Shen-ling-bai-zhu-san (SLBZS) is described in "Tai Ping Hui Min He Ji Ju Fang." SLBZS has been shown to be effective against many gastrointestinal diseases. The present study aimed to investigate the effect of SLBZS on experimental colitis in mice and to define the potential mechanisms. Our data suggest that compared to the model group, SLBZS treatment increases mouse body weight and colon length, decreases the DAI score, and improves colonic injury. SLBZS reduces the production of cytokines (IL-1ß, IL-18, and TNF-α) in colon tissue and mouse colonic mucosal epithelial (MCME) cells. Mechanistically, SLBZS inhibits inflammation by inhibiting the MAPK and NF-κB signaling pathways. Further mechanistic analyses showed that SLBZS attenuates the expression levels of pyroptosis-related genes, including NLRP3, ASC, and GSDMD-N in the colons of mice. In addition, SLBZS restores the levels of the colon tight junction proteins ZO-1 and occludin, suggesting that it protects colonic barrier integrity and ameliorates the progression of colitis. In this paper, we demonstrate that SLBZS attenuates DSS-induced ulcerative colitis injury in mice via the MAPK/NF-κB and pyroptosis signaling pathway. These results indicate that SLBZS is a potential drug for the treatment of UC.

14.
Oxid Med Cell Longev ; 2019: 8194804, 2019.
Article in English | MEDLINE | ID: mdl-31341536

ABSTRACT

Generally, inflammatory bowel disease (IBD) can be caused by psychology, genes, environment, and gut microbiota. Therefore, IBD therapy should be improved to utilize multiple strategies. Shen Ling Bai Zhu San (SLBZS) adheres to the aim of combating complex diseases from an integrative and holistic perspective, which is effective for IBD therapy. Herein, a systems pharmacology and microbiota approach was developed for these molecular mechanisms exemplified by SLBZS. First, by systematic absorption-distribution-metabolism-excretion (ADME) analysis, potential active compounds and their corresponding direct targets were retrieved. Then, the network relationships among the active compounds, targets, and disease were built to deduce the pharmacological actions of the drug. Finally, an "IBD pathway" consisting of several regulatory modules was proposed to dissect the therapeutic effects of SLBZS. In addition, the effects of SLBZS on gut microbiota were evaluated through analysis of the V3-V4 region and multivariate statistical methods. SLBZS significantly shifted the gut microbiota structure in a rat model. Taken together, we found that SLBZS has multidimensionality in the regulation of IBD-related physiological processes, which provides new sights into herbal medicine for the treatment of IBD.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Humans , Microbiota
15.
Poult Sci ; 98(5): 1993-1999, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30566670

ABSTRACT

In this study, we examined the dose-dependent effects of the formula on Newcastle disease virus (NDV). In in-vitro test, the formula within safety concentration scope and NDV were added into cultured chick embryo fibroblast in 3 modes, and the cellular A570 values were determined by MTT (3-(4, 5-dimethyithiazol-2-yl)-2, 5-diphenyltetrazolium bromide) method. In in-vivo test, we examined the expression of interferon-induced transmembrane protein 3 (IFITM3) and Interferons (IFNs) in NDV-infected chickens. The results showed that the highest virus inhibitory rates of the formula at optimal concentration group were the highest (15.625 mg/mL) in post-adding and simultaneous-adding drug and virus modes, whereas medium concentration (7.813 mg/mL) showed the highest virus inhibitory rates in pre-adding drug mode. In vivo, the formula significantly upregulated the expression of IFITM3 in NDV-infected chickens at 3-D post-infection. However, the levels of IFNs were significantly downregulated. On days 5 and 7 post-infection, the levels of IFNs quickly upregulated. Moreover, the formula can significantly upregulate the antibody to resist the NDV compared with model control group on days 5 and 7 post-infection. In animals treated with the formula, the survival rate was nearly 37% higher at 7 d post-infection. We also found that the formula had a significantly stronger effect than a single herb on upregulating the expression of IFITM3. It confirmed that the formula could significantly inhibit the infectivity of NDV to chick embryo fibroblast. Also, the formula could significantly upregulated IFITM3 expression and inhibited virus replication in NDV-infected chickens. During the early stage of infection, IFNs were consumed to stimulate IFITM3 to inhibit virus replication, whereas during later stages of the infection, the formula upregulated the levels of IFNs and their antibodies to maintain a high level of immunity.


Subject(s)
Antiviral Agents/pharmacology , Chick Embryo/drug effects , Drugs, Chinese Herbal/pharmacology , Newcastle Disease/prevention & control , Newcastle disease virus/drug effects , Poultry Diseases/prevention & control , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens , Dose-Response Relationship, Drug , Interferons/genetics , Interferons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Random Allocation
16.
Int J Biol Macromol ; 105(Pt 3): 1622-1629, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28219687

ABSTRACT

The gut microbiome is hypothesized to play a critical role in gastrointestinal diseases, including antibiotic-associated diarrhea (AAD). To determine whether the traditional Chinese herbal formula of Shen Ling Bai Zhu San (SLBZS) modulates the composition of the gut microbiome during AAD treatment, an AAD diarrhea model was prepared in rats by gastric gavage with lincomycin for 7 successive days, followed by administration of SLBZS for one week. At all time points after the SLBZS treatment, the diarrhea rates were significantly or at least numerically lower than that of the untreated model group. Overall structural modulation of the gut microbiome occurred after SLBZS treatment, with reverting effects on the AAD-induced structural variations. At the genus level, the relative abundance of Sutterella was negatively correlated with SLBZS treatment and positively correlated with a lack of treatment, suggesting that Sutterella might be a pivotal phylotype associated with the improvement of AAD. The key phylotypes of the gut microbiome that responded to SLBZS indicated enrichment of beneficial bacteria, and particularly Bacteroides spp. These data therefore demonstrated that structural changes of the gut microbiome are induced by the Chinese herbal formula SLBZS. In conclusion, changes in the gut microbiome are associated with the diarrhea-controlling effect of SLBZS.


Subject(s)
Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/microbiology , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Colon/drug effects , Colon/microbiology , Colon/pathology , Male , Phylogeny , Rats , Rats, Wistar
17.
Article in English | MEDLINE | ID: mdl-29434646

ABSTRACT

To determine whether the traditional Chinese herbal formula of Shen Ling Baizhu (SLB) could modulate the composition of the gut microbiota and alleviate diarrhoea in suckling piglets, twenty-four newly born piglets (Large White × Landrace × Duroc) were selected and allocated to 4 groups (control group and experimental groups I, II, and III) randomly. Faecal microbiome composition was assessed by 16S rRNA gene 454-pyrosequencing. The result indicated that experimental groups I and II exhibited significantly different gut microbiota from the control group. Most notably, the genera Lactobacillus and Bifidobacterium were significantly elevated in experimental group II compared with the control group (P < 0.05). Collinsella and Faecalibacterium were also enhanced in experimental group II compared with the control group (P < 0.05). The results showed that SLB treatment could modulate the gut microbiota composition of suckling piglets, enriching the amount of beneficial bacteria in particular. The observed changes in the gut microbiota could provide the basis for further research on the pharmacological mechanism of the tested Chinese herbal formula.

18.
Biol Trace Elem Res ; 163(1-2): 162-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25431300

ABSTRACT

Aflatoxin B1 (AFB1) is a mycotoxin that causes cytotoxicity through oxidative damage to its target organs. The liver is the first target of AFB1 damage. The aim of this study was to evaluate the protective effect of selenium on AFB1-induced hepatic mitochondrial damage in ducklings using molecular biological and histopathological techniques. Aflatoxin was administered via intragastric intubation (0.1 mg/kg body weight), daily for 21 days. The experimental group also received intragastric sodium selenite (1 mg/kg body weight), while the control group was given the same volume of dimethyl sulfoxide (DMSO). Sequence analysis of the mitochondrial DNA D-loop region showed that AFB1 induced damage. All AFB1-administrated ducklings were identified as having D-loop mitochondrial DNA mutations. Mutations were detected in two ducklings that had received both AFB1 and selenium. Mitochondrial swelling assays showed that opening of the mitochondrial permeability transition pores was increased in ducklings that had received AFB1 for 14 and 21 days (P < 0.05). Selenium significantly attenuated these adverse effects of AFB1. After AFB1 exposure, histological alterations were observed, including fat necrosis, steatosis, and formation of lymphoid nodules with infiltrated lymphocytes. These histological abnormalities were also attenuated by treatment with selenium. The overall data indicated that selenium exerts a potent protective effect against AFB1-induced hepatic mitochondrial damage, possibly through its antioxidant activity.


Subject(s)
Aflatoxin B1/toxicity , DNA Damage , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Poisons/toxicity , Selenium/pharmacology , Animals , Ducks , Mitochondria, Liver/pathology , Mitochondrial Membranes/pathology , Permeability
19.
Biol Trace Elem Res ; 162(1-3): 296-301, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25274191

ABSTRACT

Aflatoxin B1 (AFB1) is a mycotoxin which causes toxicity through oxidative damage. Selenium (Se), an antioxidative agent, can antagonize some toxicity induced by oxidative stress. The aim of this work was to investigate the toxicity of AFB1 and the protective effects of Se on duckling liver in vivo. The study consisted of three groups: AFB1, AFB1Tx, and a control group. AFB1 group was administered aflatoxin intragastrically (0.1 mg/kg body weight). AFB1Tx group was administered AFB1 intragastrically (0.1 mg/kg body weight) plus sodium selenite (1 mg/kg body weight). The control group was given the same volume of dimethyl sulfoxide (DMSO) via intragastric intubation. All three groups received daily administrations for 28 days. Blood samples were obtained on the 14th, 21st, and 28th days of post-administration, and the serum alanine aminotransferase (ALT) and aspartate transaminase (AST) were evaluated. A high level of serum ALT and AST was observed in AFB1 group. The activity of ALT and AST was significantly lower in Se treatment group than those in AFB1 group. Liver samples were collected on the 14th, 21st, and 28th days of post-administration, and concentrations of Bcl-2, Bax, caspase-3, and p53 were measured. Increased expression level of Bax, caspase-3, and p53 and decreased Bcl-2 expression level and Bcl-2/Bax ratio were observed in AFB1 group. Se diminished hepatic dysfunction, or damage and modulated the expression of apoptotic related proteins, in a time-dependent manner. In conclusion, concurrent treatment with Se reduced the AFB1-induced hepatic dysfunction and apoptosis.


Subject(s)
Aflatoxin B1/pharmacology , Liver/drug effects , Liver/metabolism , Selenium/pharmacology , Animals , Apoptosis/drug effects , Ducks
20.
Biol Trace Elem Res ; 145(3): 312-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21909799

ABSTRACT

To investigate the protection of selenium on hepatic mitochondrial functions, 90 7-day-old ducklings were randomly divided into three groups (groups I-III). Group I was used as a blank control. Group II was administered with aflatoxin B(1) (0.1 mg/kg body weight). Group III was administered with aflatoxin B(1) (0.1 mg/kg body weight) plus selenium (sodium selenite, 1 mg/kg body weight). All treatments were given once daily for 21 days. The results showed that the activities of hepatic mitochondrial complexes I-IV in group II ducklings significantly decreased when compared with group I (P < 0.01). Furthermore, the activities of hepatic mitochondrial complexes I-IV in group III significantly increased when compared with group II (P < 0.05). The hepatic mitochondrial respiratory control ratio (RCR) in group II ducklings significantly decreased when compared with group I (P < 0.01). In addition, the hepatic mitochondrial RCR in group III significantly increased when compared with group II (P < 0.05). These results revealed that the aflatoxin B(1) significantly induced hepatic mitochondrial dysfunction in the activities of hepatic mitochondrial respiratory chain complexes I-IV and the RCR in ducklings. However, sodium selenite could significantly ameliorate the negative effect induced by aflatoxin B(1).


Subject(s)
Aflatoxin B1/poisoning , Electron Transport , Mitochondria, Liver/drug effects , Respiration/drug effects , Selenium/pharmacology , Aflatoxin B1/toxicity , Animals , Ducks , Mitochondria, Liver/metabolism , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL