Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chim Acta ; 1293: 342200, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38331549

ABSTRACT

Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.


Subject(s)
Adenosine Triphosphate , Metal Nanoparticles , Adenosine Triphosphate/chemistry , Gold/chemistry , Dental Pulp , Metal Nanoparticles/chemistry , Cell Differentiation , Stem Cells
2.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38287904

ABSTRACT

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Subject(s)
Cytoskeletal Proteins , Neural Tube Defects , Animals , Cytoskeletal Proteins/metabolism , Neural Tube/metabolism , Macaca fascicularis , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/veterinary , Neuroepithelial Cells/metabolism , Folic Acid/metabolism , Organoids , Cytoskeleton
SELECTION OF CITATIONS
SEARCH DETAIL