Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564478

ABSTRACT

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Mice , Humans , Female , Breast Neoplasms/drug therapy , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Lung Neoplasms/drug therapy , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Iron , Starch , Magnetic Iron Oxide Nanoparticles
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621941

ABSTRACT

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Subject(s)
Artemisinins , Neuralgia , Mice , Animals , Pregabalin , gamma-Aminobutyric Acid , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism
3.
Food Funct ; 15(8): 4421-4435, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563324

ABSTRACT

Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Inflammation , Insulin Resistance , Mice, Inbred C57BL , Tea , Animals , Male , Mice , Catechin/pharmacology , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Tea/chemistry
4.
Phytomedicine ; 129: 155566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565001

ABSTRACT

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE: We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS: The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS: XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS: XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.


Subject(s)
Brain Injuries, Traumatic , Brain-Derived Neurotrophic Factor , Drugs, Chinese Herbal , Hippocampus , MicroRNAs , Neuronal Plasticity , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , Brain Injuries, Traumatic/drug therapy , Drugs, Chinese Herbal/pharmacology , Neuronal Plasticity/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Male , Rats , Neuroprotective Agents/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Receptor, trkB/metabolism
5.
Chin J Integr Med ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329655

ABSTRACT

Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.

6.
J Dig Dis ; 25(1): 27-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38342693

ABSTRACT

OBJECTIVE: To investigate the clinical potential and safety of Moluodan to reverse gastric precancerous lesions. METHODS: Patients aged 18-70 years diagnosed with moderate-to-severe atrophy and/or moderate-to-severe intestinal metaplasia, with or without low-grade dysplasia, and negative for Helicobacter pylori were recruited in this randomized, double-blind, parallel-controlled trial. The primary outcome was the improvement of global histological diagnosis at 1-year follow-up endoscopy using the operative link for gastritis assessment, the operative link for gastric intestinal metaplasia assessment, and the disappearance rate of dysplasia. RESULTS: Between November 3, 2017 and January 27, 2021, 166 subjects were randomly assigned to the Moluodan group, 168 to the folic acid group, 84 to the combination group, and 84 to the high-dose Moluodan group. The improvement in global histological diagnosis was achieved in 60 (39.5%) subjects receiving Moluodan, 59 (37.8%) receiving folic acid, 26 (32.1%) receiving the combined drugs, and 36 (47.4%) receiving high-dose Moluodan. Moluodan was non-inferior to folic acid (95% confidence interval: -9.2 to 12.5; P = 0.02). High-dose Moluodan had a trend for better protective efficacy, though there was no statistical significance. The disappearance rate of dysplasia was 82.8% in the Moluodan group, which was superior to folic acid (53.9%; P = 0.006). No drug-related serious adverse events were observed. CONCLUSIONS: One pack of Moluodan three times daily for 1 year was safe and effective in reversing gastric precancerous lesions, especially dysplasia. Doubling its dose showed a better efficacy trend.


Subject(s)
Drugs, Chinese Herbal , Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/pathology , Helicobacter Infections/complications , Helicobacter Infections/drug therapy , Precancerous Conditions/drug therapy , Precancerous Conditions/pathology , Metaplasia , Folic Acid/therapeutic use , Gastric Mucosa/pathology
7.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38205834

ABSTRACT

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Subject(s)
Acer , Antineoplastic Agents , Demyelinating Diseases , Mitochondrial Diseases , Animals , Humans , Mitophagy , Oxaliplatin/pharmacology , Zebrafish/metabolism , Quality of Life , Seeds/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Oils/pharmacology , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases
8.
Food Chem ; 441: 138366, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199110

ABSTRACT

The effect of adding apple high-methoxy pectin (HMP) (0-3 mg∙mL-1) on heat-induced gel characteristics of low concentration silver carp myofibrillar protein (MP) (15 mg∙mL-1) was studied. It was found that the hardness of gel increased by 20.6 times with adding 2 mg∙mL-1 HMP. Besides, HMP aided in the development of disulfide bonds and the aggregation of hydrophobic groups. During gel formation, the maximal storage modulus (G') of samples supplemented with 2 mg·mL-1 HMP was raised by a factor of 2.7. Of note, the images of SEM showed that protein and water were tightly combined with a proper amount of HMP and made its pores more uniform and dense. Meantime, the addition of moderate amounts of HMP enabled the formation of gels with favorable texture and performance at low concentration of MP was identified, which could provide a theoretical reference for the design and production of flesh low-calorie food gel.


Subject(s)
Carps , Malus , Animals , Hot Temperature , Pectins/chemistry , Hydrophobic and Hydrophilic Interactions , Gels/chemistry , Rheology/methods
9.
Heliyon ; 10(1): e23533, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173486

ABSTRACT

This study was conducted to observe the effect of Chinese herbal compound on the treatment of colon cancer using AOM/DSS-induced C57BL/6J colon cancer mice and to validate potential influence on intestinal flora of mice. A colorectal cancer (CRC) mouse model was built with a total of 50 C57BL/6J mice that were induced by administrating AOM/DSS. These experimental animals were split up into 5 groups, a control group, a model group, and low-, medium- and high-dose Chinese herbal compound groups. All mice were given Chinese herbal compound treatment, and the colon tissues of each group were harvested with the length measured and the number of colon polyps accounted. The Ki-67 expression in the colon tissues was detected via immuno-histochemistry. Relative quantification of the expression of genes and proteins was determined through qPCR and WB assays. Contents of IL-6, TNF-α, IFN-γ, and IL-10 in serum and colon tissues of mice were determined by ELISA. An additional 16S rRNA sequencing analysis was implemented for the identification of mouse intestinal flora. The results suggested that all low-, medium- or high-dose Chinese herbal compound could markedly inhibit the shortening of colon length and significant number reduction of colon polyps in the model group. The relative expression of genes and proteins (PCNA, Muc16, and MMP-9) associated with proliferation in mouse colon tissues were inhibited. In addition, compared with the model group, the contents of IL-6, TNF-α, and IFN-γ in serum and colon tissues were substantially decreased in the high-dose Chinese herbal compound group, thereby reducing the structure damage in colon tissues and the infiltration degree of inflammatory cells. Besides, the expression of TLR4/MyD88/NF-κB protein was markedly decreased. The 16S rRNA sequencing analysis demonstrated that mice in the model group had decreased intestinal flora diversity, and there were significant changes in flora abundance and amino acid metabolism between the control group and the model group. Taken together, the treatment of Chinese herbal compound against CRC in this study might be regulated by the TLR4/MyD88/NF-κB signaling pathway, and the imbalance in intestinal flora was also closely related to CRC occurrence.

10.
Nat Prod Res ; 38(1): 135-139, 2024.
Article in English | MEDLINE | ID: mdl-35895027

ABSTRACT

Swertia perennis Linnaeus (SP) has been utilised to treat gastritis. We report the qualitative and quantitative phytochemical analysis, antioxidant and enzyme inhibitory activities of SP. The correlation between the biological activities and total bioactive contents of the extracts was also studied via multivariate analysis. Methanol extract contained many active compounds and exhibited good antioxidant activity. Therefore, this was selected for further phytochemical profiling and stability studies. Fourteen compounds were identified by ultra-performance liquid chromatography-electrospray ionisation-orbitrap-mass spectrometry for the first time from this plant. Iridoids, xanthones, and flavonoids were the main components. Methanol extract exhibited good stability and antioxidant capacity in stability studies, with low toxicity, and showed a protective effect on the oxidation of olive and sunflower oils. SP has the potential to be developed and used as an antioxidant, or as urease and XO inhibitors, and its methanol extract could be used as a natural oil stabiliser.


Subject(s)
Antioxidants , Swertia , Antioxidants/chemistry , Plant Extracts/chemistry , Swertia/chemistry , Methanol/chemistry , Flavonoids/chemistry , Plant Components, Aerial/chemistry , Phytochemicals/analysis , Multivariate Analysis
11.
J Ethnopharmacol ; 323: 117658, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38160865

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic retinopathy (DR) is one of the most severe complications of diabetes mellitus, diabetes belongs to the category of "emaciation-thirst disease" in traditional Chinese medicine (TCM). Bushen Huoxue Prescription (BHP) is composed of traditional Chinese materia medica, which has therapeutic effects on DR and early diabetic retinal edema (EDRE). However, the therapeutic mechanism is unclear. AIM OF THE STUDY: Exploring the mechanism of BHP against EDRE. METHODS: Feeding Sprague Dawley (SD) rats a high-fat, high-sugar diet as well as providing intraperitoneal injections of streptozotocin (STZ) to promote inner blood-retinal barrier (iBRB) damage that can trigger EDRE, evaluating the therapeutic effect of BHP by the level of expressiveness of TJ proteins (ZO-1,Occludin) of the iBRB and the leakage of rhodamine B isothiocyanate (RITC) in the retina. The combination of network pharmacology and metabolomics was employed to study the mechanism of BHP in preventing of EDRE, then four proteins which were closely to the damage of iBRB were chosen for the validation by employing Western Blot (WB). RESULTS: Research of network pharmacology had shown that BHP had efficacy against EDRE by regulating targets such as AKT1, ALB, TNF, PPARG, etc, its potential pathways mainly involving signaling pathways such as HIF-1. In untargeted metabolomics analysis of serum, 15 differential metabolites were identified, with the metabolic pathways focusing on ketone body metabolism and synthesis, sphingolipid metabolism and phenylalanine metabolism. The conclusions of metabolomics and network pharmacology revealed that BHP can treat EDRE by alleviating hypoxia and oxidative stress and exerting protection of the iBRB. Finally, BHP's protection behavior of the iBRB was validated by WB experiments. CONCLUSION: Through integrating pharmacodynamics, network pharmacology and metabolomics, BHP was discovered to have a crucial function in EDRE therapy by preserving the integrity of iBRB. This comprehensive strategy also provided a reasonable way to reveal the multi-components, multi-targets, multi-pathways mechanism of TCM.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Drugs, Chinese Herbal , Rats , Animals , Blood-Retinal Barrier , Rats, Sprague-Dawley , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/metabolism , Diabetes Mellitus/metabolism
12.
Acupunct Med ; : 9645284231210576, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38126331
13.
Mil Med Res ; 10(1): 45, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37752599

ABSTRACT

Integrated traditional Chinese medicine (TCM) and Western medicine (WM) is a new medical science grounded in the knowledge bases of both TCM and WM, which then forms a unique modern medical system in China. Integrated TCM and WM has a long history in China, and has made important achievements in the process of clinical diagnosis and treatment. However, the methodological defects in currently published clinical practice guidelines limit its development. The organic integration of TCM and WM is a deeper integration of TCM and WM. To realize the progression of "integration" to "organic integration", a targeted and standardized guideline development methodology is needed. Therefore, the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.


Subject(s)
Medicine, Chinese Traditional , Practice Guidelines as Topic , Humans , China
14.
Phytomedicine ; 121: 155103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769553

ABSTRACT

BACKGROUND: Postinfectious cough (PIC) is a common symptom following a respiratory tract infection. Xingbei Zhike (XBZK) granules, a Chinese patent medicine, has been widely used for PIC in clinics. However, there is a lack of evidence on the effectiveness. PURPOSE: To investigate whether treatment with XBZK granules is effective for PIC. STUDY DESIGN: A multicenter, randomized, double-blinded, placebo-controlled trial. METHODS: Eligible participants from fourteen hospitals were randomly assigned in 3:1 ratio to receive either XBZK granules or placebo for 14 days. The primary outcome was the area under the curve (AUC) of a visual analogue scale (VAS) for cough symptoms. Secondary outcomes included cough symptom score (CSS), time and probability of recovery from cough, traditional Chinese medicine (TCM) syndrome score, relief rates of individual symptoms, Leicester Cough Questionnaire (LCQ) score, and the use of reliever drug. RESULTS: A total of 235 patients (176 in XBZK and 59 in placebo groups) were included in the analysis. The AUC for cough VAS scores was lower in the XBZK than placebo group (-8.10, 95 % CI -14.12 to -2.07, p = 0.009), indicating superiority. XBZK decreased CSS (-0.68 points, 95 % CI -1.13 to -0.22, p = 0.01), shortened time to cough recovery (-2 days, hazard ratio [HR] 1.48, 95 % CI 1.03 to 2.13, p = 0.02), enhanced the probability of cough recovery (risk ratio [RR] 1.66, 95 % CI 1.07 to 2.58, p = 0.03), lowered TCM syndrome score (-0.99 points, 95 % CI -1.58 to -0.40, p = 0.004), increased the rate of daytime (RR 1.84, 95 % CI 1.07 to 3.15, p = 0.02) and nighttime (RR 2.07, 95 % CI 1.29 to 3.35, p = 0.004) cough recovery, and reduced the viscosity of sputum (RR 2.92, 95 % CI 1.66 to 5.13, p < 0.001) compared to placebo. There were no significant differences in LCQ scores and taking reliever drugs between groups. No severe adverse events were reported in either group. CONCLUSIONS: XBZK granules are a promising therapy against PIC, effective in lowering the overall severity of cough, shortening the time to cough recovery, and reducing the viscosity of sputum.


Subject(s)
Drugs, Chinese Herbal , Respiratory Tract Infections , Humans , Cough/drug therapy , Medicine, Chinese Traditional , Respiratory Tract Infections/drug therapy , Treatment Outcome , Double-Blind Method , Drugs, Chinese Herbal/adverse effects
15.
Food Chem Toxicol ; 178: 113926, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406757

ABSTRACT

BACKGROUND AND OBJECTIVE: Ibuprofen, a common non-steroidal anti-inflammatory drug, is used clinically for pain relief and antipyretic treatment worldwide. However, regular or long-term use of ibuprofen may lead to a series of adverse reactions, including gastrointestinal bleeding, hypertension and kidney injury. Previous studies have shown that CYP2C9 gene polymorphism plays an important role in the elimination of various drugs, which leads to the variation in drug efficacy. This study aimed to evaluate the effect of 38 CYP2C9 genotypes on ibuprofen metabolism. METHODS: Thirty-eight recombinant human CYP2C9 microsomal enzymes were obtained using a frugiperda 21 insect expression system according to a previously described method. Assessment of the catalytic function of these variants was completed via a mature incubation system: 5 pmol CYP2C9*1 and 38 CYP2C9 variants recombinant human microsomes, 5 µL cytochrome B5, ibuprofen (5-1000 µM), and Tris-HCl buffer (pH 7.4). The ibuprofen metabolite contents were determined using HPLC analysis. HPLC analysis included a UV detector, Plus-C18 column, and mobile phase [50% acetonitrile and 50% water (containing 0.05% trifluoroacetic acid)]. The kinetic parameters of the CYP2C9 genotypes were obtained by Michaelis-Menten curve fitting. RESULTS: The intrinsic clearance (CLint) of eight variants was not significantly different from CYP2C9*1; four CYP2C9 variants (CYP2C9*38, *44, *53 and *59) showed significantly higher CLint (increase by 35%-230%) than that of the wild-type; the remaining twenty-six variants exhibited significantly reduced CLint (reduced by 30%-99%) compared to that of the wild-type. CONCLUSION: This is the first systematic evaluation of the catalytic characteristics of 38 CYP2C9 genotypes involved ibuprofen metabolism. Our results provide a corresponding supplement to studies on CYP2C9 gene polymorphisms and kinetic characteristics of different variants. We need to focus on poor metabolizers (PMs) with severely abnormal metabolic functions, because they are more susceptible to drug exposure.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ibuprofen , Humans , Ibuprofen/chemistry , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Polymorphism, Genetic , Genotype
16.
Biomacromolecules ; 24(8): 3846-3857, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37475132

ABSTRACT

Melanoma is resistant to conventional chemotherapy and radiotherapy. Therefore, it is essential to develop a targeted, low-toxic, and minimally invasive treatment. Here, DTIC/ICG-Fe3O4@TpBD BSP/HA microneedles (MNs) were designed and fabricated, which can enhance targeting to melanoma and perform photothermal therapy (PTT) and chemotherapy simultaneously to synergistically exert anticancer effects. The system consisted of magnetic nanoparticles (DTIC/ICG-Fe3O4@TpBD), dissoluble matrix (Bletilla polysaccharide (BSP)/hyaluronic acid (HA)), and a polyvinyl alcohol backing layer. Due to the good magnetic responsiveness of Fe3O4@TpBD, dacarbazine (DTIC) and indocyanine green (ICG) can be better targeted to the tumor tissue and improve the therapeutic effect. BSP and HA have good biocompatibility and transdermal ability, so that the MNs can completely penetrate the tumor tissue, be dissolved by the interstitial fluid, and release DTIC and ICG. Under near-infrared (NIR) light irradiation, ICG converts light energy into thermal energy and induces ablation of B16-OVA melanoma cells. In vivo results showed that DTIC/ICG-Fe3O4@TpBD BSP/HA MNs combined with chemotherapy and PTT could effectively inhibit the growth of melanoma without tumor recurrence or significant weight loss in mice. Therefore, DTIC/ICG-Fe3O4@TpBD BSP/HA MNs are expected to provide new ideas and therapeutic approaches for the clinical treatment of melanoma.


Subject(s)
Hyperthermia, Induced , Melanoma , Metal-Organic Frameworks , Nanoparticles , Animals , Mice , Hyperthermia, Induced/methods , Melanoma/drug therapy , Phototherapy/methods , Indocyanine Green/pharmacology , Dacarbazine , Cell Line, Tumor
17.
J Ethnopharmacol ; 317: 116706, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37301305

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY: This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS: Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS: Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION: IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.


Subject(s)
Lipopolysaccharides , MAP Kinase Signaling System , Rats , Animals , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Macrophages, Peritoneal , Cyclooxygenase 2/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
18.
Food Chem ; 426: 136615, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37331136

ABSTRACT

Pickering emulsion catalytic system (PEC) stabilized by nanoparticles is an efficient catalytic platform. Herein, a high-performance PEC was constructed by acetylated modification of arachin nanoparticles (AAPs). The results showed the pI of arachin was decreased from pH 5.5 to pH 3.5. The surface hydrophobicity index was significantly increased (from 56.28 ± 4.23 to 120.77 ± 0.79) after acetylated modification. The three-phase contact angle of AAPs was 91.20 ± 0.98°. AAPs were used as lipase immobilization carriers to increase the activity of free lipase fabricating lipase-AAPs. The immobilization efficiency and activity of lipase-AAPs were 12.95 ± 0.03% and 1.74 ± 0.07 U/mg, respectively. Enzymatic reaction kinetics showed that Vm of lipase-AAPs was twice of free lipase. Km was 1/5 of free lipase. The catalytic efficiency of PEC to prepare DAG was 2.36 times of biphasic catalytic system (BCS). This work provided a promising way to promote the efficiency of DAG preparation.


Subject(s)
Nanoparticles , Soybean Oil , Emulsions , Diglycerides , Lipase
19.
Future Microbiol ; 18: 547-552, 2023 06.
Article in English | MEDLINE | ID: mdl-37314362

ABSTRACT

The management of severe neurologic infections due to multidrug-resistant (MDR) Klebsiella pneumoniae infection remains a challenge. Limited antibiotic treatment regimens make treatment of severe MDR K. pneumoniae infection more difficult. We describe a patient who developed severe meningitis and ventriculitis after craniotomy caused by MDR K. pneumoniae and was effectively treated with the administration of multichannel applications (intravenous, intrathecal and aerosol inhalation) of colistin sulfate. This case provides clinical evidence that the intrathecal, intravenous and aerosol inhalation of colistin sulfate by multichannel application can be a last resort in refractory intracranial infection by MDR K. pneumoniae.


Subject(s)
Colistin , Klebsiella Infections , Humans , Colistin/therapeutic use , Colistin/pharmacology , Klebsiella pneumoniae , Klebsiella Infections/drug therapy , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
20.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237885

ABSTRACT

As the most important natural antioxidants in plant extracts, polyphenols demonstrate versatile bioactivities and are susceptible to oxidation. The commonly used ultrasonic extraction often causes oxidation reactions involving the formation of free radicals. To minimize the oxidation effects during the ultrasonic extraction process, we designed a hydrogen (H2)-protected ultrasonic extraction method and used it in Chrysanthemum morifolium extraction. Hydrogen-protected extraction improved the total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and polyphenol content of Chrysanthemum morifolium water extract (CME) compared with air and nitrogen (N2) conditions. We further investigated the protective effects and mechanisms of CME on palmitate (PA)-induced endothelial dysfunction in human aorta endothelial cells (HAECs). We found that hydrogen-protected CME (H2-CME) best-prevented impairment in nitric oxide (NO) production, endothelial NO synthase (eNOS) protein level, oxidative stress, and mitochondrial dysfunction. In addition, H2-CME prevented PA-induced endothelial dysfunction by restoring mitofusin-2 (MFN2) levels and maintaining redox balance.

SELECTION OF CITATIONS
SEARCH DETAIL