Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 325: 117739, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is the dry roots and rhizomes of Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L. and Glycyrrhiza inflata Bat., which was first recorded in Shengnong's herbal classic. Licorice flavonoid (LF) is the main compound isolated from licorice with an indispensable action in treating gastric ulcer (GU). However, the underlying mechanisms need to be further explored. AIM OF THE STUDY: This study aimed to investigate and further elucidate the mechanisms of LF against ethanol-induced GU using an integrated approach. MATERIALS AND METHODS: The anti-GU effects of LF were evaluated in an ethanol-induced gastric injury rat model. Then, the metabolomics approach was applied to explore the specific metabolites and metabolic pathways. Next, the network pharmacology combined with metabolomics strategy was employed to predict the targets and pathways of LF for GU. Finally, these predictions were validated by molecular docking, RT-qPCR, and western blotting. RESULTS: LF had a positive impact on gastric injury and regulated the expression of GU-related factors. Upon serum metabolomics analysis, 25 metabolic biomarkers of LF in GU treatment were identified, which were primarily involved in amino acid metabolism, carbohydrate metabolism, and other related processes. Subsequently, a "components-targets-metabolites" network was constructed, revealing six key targets (HSP90AA1, AKT1, MAPK1, EGFR, ESR1, PIK3CA) that may be associated with GU treatment. More importantly, KEGG analysis highlighted the importance of the PI3K/AKT pathway including key targets, as a critical route through which LF exerted its anti-GU effects. Molecular docking analyses confirmed that the core components of LF exhibited a strong affinity for key targets. Furthermore, RT-qPCR and western blotting results indicated that LF could reverse the expression of these targets, activate the PI3K/AKT pathway, and ultimately reduce apoptosis. CONCLUSION: LF exerted a gastroprotective effect against gastric ulcer induced by ethanol, and the therapeutic mechanism may involve improving metabolism and suppressing apoptosis through the PI3K-AKT pathway.


Subject(s)
Glycyrrhiza , Stomach Ulcer , Animals , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Apoptosis , Ethanol , Flavonoids/pharmacology , Flavonoids/therapeutic use , Signal Transduction
2.
Biomed Pharmacother ; 169: 115868, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37952360

ABSTRACT

Licorice flavonoid (LF) is the main component of Glycyrrhizae Radix et Rhizoma, a "medicine food homology" herbal medicine, which has anti-digestive ulcer activity, but the mechanism in anti-gastric ulcer (GU) remains to be elucidated. In this study, we manifested that LF increased the viability of human gastric mucosal epithelial (GES-1) cells, attenuated ethanol (EtOH)-induced manifestations, reduced histological injury, suppressed inflammation, and restored gastric mucosal barrier in GU rats. After LF therapy, the EtOH-induced gut dysbiosis was partly modulated, and short-chain fatty acids (SCFAs) like butyric acid, propionic acid, and valeric acid were found in higher concentrations. We discovered that the majority of genera that increased in the GU group had a negative correlation with SCFAs in the intestinal tract. In addition, LF-upregulated SCFAs boosted mucus secretion in the gastric epithelium and the expression of mucoprotein (MUC) 5AC and MUC6, particularly the MUC5AC in the gastric foveola. Moreover, LF triggered the EGFR/ERK signal pathway which promoted gastric mucus cell regeneration. Therefore, the findings indicated that LF could inhibit inflammation, promote mucosal barrier repair and angiogenesis, regulate gut microbiota and SCFA metabolism; more importantly, promote epithelial proliferation via activation of the EGFR/ERK pathway, exerting a protective and regenerative effect on the gastric mucosa.


Subject(s)
Gastrointestinal Microbiome , Glycyrrhiza , Stomach Ulcer , Rats , Humans , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Ethanol/adverse effects , Mucus/metabolism , ErbB Receptors/metabolism
3.
J Nat Med ; 77(1): 28-40, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36068393

ABSTRACT

Hepatocellular carcinoma (HCC) was the third most common cause of cancer death. But it has only limited therapeutic options, aggressive nature, and very low overall survival. Dihydroartemisinin (DHA), an anti-malarial drug approved by the Food and Drug Administration (FDA), inhibited cell growth in HCC. The Warburg effect was one of the ten new hallmarks of cancer. Solute carrier family 2 member 1 (SLC2A1) was a crucial carrier for glucose to enter target cells in the Warburg effect. Yes-associated transcriptional regulator 1 (YAP1), an effector molecule of the hippo pathway, played a crucial role in promoting the development of HCC. This study sought to determine the role of DHA in the SLC2A1 mediated Warburg effect in HCC. In this study, DHA inhibited the Warburg effect and SLC2A1 in HepG2215 cells and mice with liver tumors in situ. Meanwhile, DHA inhibited YAP1 expression by inhibiting YAP1 promoter binding protein GA binding protein transcription factor subunit beta 1 (GABPB1) and cAMP responsive element binding protein 1 (CREB1). Further, YAP1 knockdown/knockout reduced the Warburg effect and SLC2A1 expression by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors. Taken together, our data indicated that YAP1 knockdown/knockout reduced the SLC2A1 mediated Warburg effect by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors induced by DEN/TCPOBOP. DHA, as a potential YAP1 inhibitor, suppressed the SLC2A1 mediated Warburg effect in HCC.


Subject(s)
Artemisinins , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Adaptor Proteins, Signal Transducing/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Glucose Transporter Type 1 , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/therapeutic use , Humans
4.
Phytother Res ; 37(5): 1740-1753, 2023 May.
Article in English | MEDLINE | ID: mdl-36576358

ABSTRACT

The efficacy of anti-PD-1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti-PD-1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4+ and CD8+ T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4+ and CD8+ T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF-ß and IFN-γ in liver tumor niche and exhausted CD8+ T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD-L1 in liver tumor cells and increased CD8+ T cell infiltration. Furthermore, DHA combined with anti-PD-1 treatment promoted CD4+ T cell infiltration in the spleen and CD8+ T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD-L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti-PD-1 therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , CD8-Positive T-Lymphocytes , Immunosuppressive Agents , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Tumor Microenvironment , YAP-Signaling Proteins/drug effects , YAP-Signaling Proteins/genetics
5.
Article in English | MEDLINE | ID: mdl-35722140

ABSTRACT

Background and Aims: Artemisia annua (Qinghao) and Sophora flavescens (Kushen) are traditional Chinese medicines (TCMs). They are widely used in disease therapy, including hepatocellular carcinoma (HCC). However, their key compounds and targets for HCC treatment are unclear. This article mainly analyzed the vital active compounds and the mechanism of Qinghao-Kushen acting on HCC. Methods: First, we chose a traditional Chinese medicine, which has an excellent clinical effect on HCC by network meta-analysis. Then, we composed the Qinghao-Kushen herb pair and prepared the medicated serum. The active compounds of Qinghao-Kushen were verified by the LC-MS method. Next, we detected key targets from PubChem, SymMap, SwissTargetPrediction, DisGeNET, and GeneCards databases. Subsequently, the mechanism of Qinghao-Kushen was predicted by network pharmacology strategy and primarily examined in HuH-7 cells, HepG2 cells, and HepG2215 cells. Results: The effect of the Qinghao-Kushen combination was significantly better than that of single Qinghao or single Kushen in HepG2 and HuH-7 cells. Qinghao-Kushen increased the expression of activated caspase-3 protein than Qinghao or Kushen alone in HepG2 and HepG2215 cells. Network analyses and the LC-MS method revealed that the pivotal compounds of Qinghao-Kushen were matrine and scopoletin. GSK-3ß was one of the critical molecules related to Qinghao-Kushen. We confirmed that Qinghao-Kushen and matrine-scopoletin decreased the expression of GSK-3ß in HepG2 cells while increased GSK-3ß expression in HepG2215 cells. Conclusions: This work not only illustrated that the practical components of Qinghao-Kushen on HCC were matrine and scopoletin but shed light on the inhibitory of Qinghao-Kushen and matrine-scopoletin on liver cancer cells. Moreover, Qinghao-Kushen and matrine-scopoletin had a synergistic effect over the drug alone in HuH-7, HepG2, or HepG2215 cells. GSK-3ß may be a potential target for HCC therapy.

6.
Phytomedicine ; 96: 153913, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026515

ABSTRACT

BACKGROUND: Anti-PD-1 was used to treat for many cancers, but the overall response rate of monoclonal antibodies blocking the inhibitory PD-1/PD-L1 was less than 20%. Lipid droplet (LD) deposition reduced chemotherapy efficacy, but whether LD deposition affects anti-PD-1 treatment and its mechanism remains unclear. Dihydroartemisinin (DHA) was FDA proved antimalarial medicine, but its working mechanism on LD deposition has not been clarified. PURPOSE: This study aimed to elucidate the mechanism of DHA reducing LDs deposition and improving the efficacy of anti-PD-1. METHODS: LD numbers and area were separately detected by electron microscopy and oil Red O staining. The expression of YAP1 and PLIN2 was detected by immunohistochemical staining in liver cancer tissues. Transcription and protein expression levels of YAP1 and PLIN2 in cells were detected by qRT-PCR and Western blot after DHA treated HepG2215 cells and Yap1LKO mice. RESULTS: LD accumulation was found in the liver tumor cells of DEN/TOPBCOP-induced liver tumor mice with anti-PD-1 treatment. But DHA treatment or YAP1 knockdown reduced LD deposition and PLIN2 expression in HepG2215 cells. Furthermore, DHA reduced the LD deposition, PLIN2 expression and triglycerides (TG) content in the liver tumor cells of Yap1LKO mice with liver tumor. CONCLUSION: Anti-PD-1 promoted LD deposition, while YAP1 knockdown/out reduced LD deposition in HCC. DHA reduced LD deposition by inhibiting YAP1, enhancing the effect of anti-PD-1 therapy.


Subject(s)
B7-H1 Antigen , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Artemisinins , B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Hepatocellular/drug therapy , Hep G2 Cells , Humans , Lipid Droplets , Liver Neoplasms/drug therapy , Mice , Mice, Knockout , Perilipin-2 , YAP-Signaling Proteins
7.
Oncol Lett ; 22(3): 653, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34386075

ABSTRACT

Liver cancer is the third leading cause of cancer-associated mortality worldwide. By the time liver cancer is diagnosed, it is already in the advanced stage. Therefore, novel therapeutic strategies need to be identified to improve the prognosis of patients with liver cancer. In the present study, the profiles of GSE84402, GSE19665 and GSE121248 were used to screen differentially expressed genes (DEGs). Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for DEGs were conducted using the Database for Annotation, Visualization and Integrated Discovery. The protein-protein interaction network was established to screen the hub genes associated with liver cancer. Additionally, the expression levels of hub genes were validated using the Gene Expression Profiling Interactive Analysis and Oncomine databases. In addition, the prognostic value of hub genes in patients with liver cancer was analyzed using Kaplan-Meier Plotter. It was demonstrated that 132 and 246 genes were upregulated and downregulated, respectively, in patients with liver cancer. Among these DEGs, 10 hub genes with high connected node values were identified, which were AURKA, BIRC5, BUB1B, CCNA2, CCNB1, CCNB2, CDC20, CDK1, DLGAP5 and MAD2L1. CDK1 and CCNB1 had the most connection nodes and the highest score and were therefore, the most significantly expressed. In addition, it was demonstrated that high expression levels of CDK1 and CCNB1 were associated with poor overall survival time of patients with liver cancer. Dihydroartemisinin (DHA) is a Food and Drug Administration-approved drug, which is derived from the traditional Chinese medicine Artemisia annua Linn. DHA inhibits cell proliferation in numerous cancer types, including liver cancer. In our previous study, it was revealed that DHA inhibited the proliferation of HepG2215 cells. In the present study, it was further demonstrated that DHA reduced the expression levels of CDK1 and CCNB1 in liver cancer. Overall, CDK1 and CCNB1 were the potential therapeutic targets of liver cancer, and DHA reduced the expression levels of CDK1 and CCNB1, and inhibited the proliferation of liver cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL