Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38666407

ABSTRACT

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Subject(s)
Adenosine Triphosphate , Antineoplastic Agents , Infrared Rays , Animals , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy , Drug Repositioning , Humans , Lasers , Photothermal Therapy , Mice, Inbred BALB C , Cell Proliferation/drug effects , Cell Line, Tumor , Alginates/chemistry , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Drug Screening Assays, Antitumor , Particle Size , Artemisinins/chemistry , Artemisinins/pharmacology
2.
Chem Commun (Camb) ; 59(61): 9352-9355, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37431730

ABSTRACT

Transarterial chemoembolization (TACE) is one of the most commonly used treatments for hepatocellular carcinoma (HCC); however, the poor stability of emulsified chemotherapy drugs by iodinated oil always leads to serious systemic cytotoxicity. Herein, a composite hydrogel Epi/Etpoil@MC/XG was proposed by stably distributing ethiodized poppyseed oil (Etpoil) and epirubicin (Epi) in the blend hydrogel of methylcellulose (MC) and xanthan gum (XG). Benefiting from its adjusted thermo-responsive and injectable properties, the Epi/Etpoil@MC/XG has been successfully applied in the embolization of the feeding artery for a VX2 tumor model.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Hydrogels/therapeutic use , Epirubicin/pharmacology , Epirubicin/therapeutic use , Ethiodized Oil/therapeutic use , Arteries
3.
ACS Appl Bio Mater ; 6(6): 2303-2313, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37190932

ABSTRACT

Since the nonspecificity and nonselectivity of traditional treatment models lead to the difficulty of cancer treatment, nanobased strategies are needed to fill in the gaps of current approaches. Herein, a tumor microenvironment (TME)-responsive chemo-photothermal treatment model was developed based on dihydroartemisinin (DHA)-loaded conjugated polymers (DHA@PLGA-PANI). The synthesized DHA@PLGA-PANI exhibited enhanced photothermal properties under mild-acidic conditions and thus triggered local heat at the tumor site. Meanwhile, these iron-doped conjugated polymers of PLGA-PANI were used as the source of Fe, and benefiting from the Fe-dependent cytotoxicity of DHA, the burst of free radicals could be generated in tumors. Therefore, the combination of TME-responsive chemo-photothermal therapy could achieve effective tumor efficacy.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Polymers , Photothermal Therapy , Phototherapy , Neoplasms/drug therapy , Tumor Microenvironment
4.
ACS Appl Bio Mater ; 5(12): 5865-5876, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36410719

ABSTRACT

Immunogenic cell death (ICD) induced by treatment modalities like chemotherapy, radiotherapy, and photothermal and photodynamic therapy has shown great potential to improve the low response rate of various solid tumors in cancer immunotherapy. However, extensive studies have revealed that the efficacy of cancer treatment is limited by the hypoxia and immunosuppression in the tumor microenvironment (TME). To address these challenges, a hypoxia alleviated and one phototriggered thermal/dynamic nanoplatform based on MnO2@PDA/ICG-BSA (MPIB) is developed for oxygen (O2) self-supply enhanced cancer phototherapy (PT). First, MnO2 transfers intracellular overexpression H2O2 into O2 in the acidic TME through its catalase-like activity to improve the hypoxia and also provide O2 for the following photodynamic therapy. Then, under single NIR-808 nm light irradiation (called the "phototherapeutic window"), excellent photothermal and photodynamic performance of the MPIB is activated for combined PT. Finally, assisted with immune adjuvant cytosine-phospho-guanine, obvious ICD and systemic antitumor immunity was elicited in PT-treated mice and demonstrated significant growth inhibition on distant tumors. This MPIB-based nanoplatform highlights the promise to overcome the limitations of hypoxia and also challenges of immunosuppressive tumor microenvironments for improved cancer immunotherapy.


Subject(s)
Manganese Compounds , Neoplasms , Mice , Animals , Manganese Compounds/therapeutic use , Immunogenic Cell Death , Hydrogen Peroxide/therapeutic use , Oxides/therapeutic use , Immunotherapy , Neoplasms/therapy , Oxygen/therapeutic use , Hypoxia/therapy , Tumor Microenvironment
5.
ACS Appl Mater Interfaces ; 13(30): 35484-35493, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34289686

ABSTRACT

For the purpose of improving the quality of life and minimizing the psychological morbidity of a mastectomy, breast-conserving treatment (BCT) has become the more preferable choice in breast cancer patients. Meanwhile, tumor hypoxia has been increasingly recognized as a major deleterious factor in cancer therapies. In the current study, a novel, effective, and noninvasive magnetothermodynamic strategy based on an oxygen-independent free-radical burst for hypoxia-overcoming BCT is proposed. Radical precursor (AIPH) and iron oxide nanoparticles (IONPs) are coincorporated within the alginate (ALG) hydrogel, which is formed in situ within the tumor tissue by leveraging the cross-linking effect induced by the local physiological Ca2+ with ALG solution. Inductive heating is mediated by IONPs under AMF exposure, and consequently, regardless of the tumor hypoxia condition, a local free-radical burst is achieved by thermal decomposition of AIPH via AMF responsivity. The combination of magnetic hyperthermia and oxygen-irrelevant free-radical production effectively enhances the in vitro cytotoxic effect and also remarkably inhibits tumor proliferation. This study provides a valuable protocol for an hypoxia-overcoming strategy and also an alternative formulation candidate for noninvasive BCT.


Subject(s)
Antineoplastic Agents/therapeutic use , Azo Compounds/therapeutic use , Breast Neoplasms/drug therapy , Hydrogels/chemistry , Imidazoles/therapeutic use , Magnetic Iron Oxide Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Alginates/chemistry , Alginates/toxicity , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Azo Compounds/chemistry , Azo Compounds/toxicity , Cell Line, Tumor , Female , Hydrogels/toxicity , Hyperthermia, Induced , Imidazoles/chemistry , Imidazoles/toxicity , Magnetic Iron Oxide Nanoparticles/toxicity , Magnetic Phenomena , Mice, Inbred BALB C
6.
Biomater Sci ; 9(17): 5928-5938, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34308465

ABSTRACT

Developing simple and efficient nanotheranostic platforms with behavior responsive to the acid microenvironment of a tumor is of great significance for accurate tumor diagnosis and therapy. In this study, a smart 2D nanotheranostic platform has been successfully fabricated by doping functional ferrous ions into as-synthesized MgAl-layered double hydroxide (LDH) with doxurubicin (DOX) loading to form Fe-LDH/DOX NPs, which achieved magnetic resonance imaging (MRI)-guided synergistic chemo/photothermal therapy for breast cancer. The doping of ferrous ions into Fe-LDH/DOX enabled a strong photo-induced heating ability with a high photothermal conversion efficiency of 45.67%, which could be combined with the antitumor drug DOX to achieve the synergistic effect of photothermal therapy (PTT) and chemotherapy for killing tumor cells. Additionally, its in vitro pH-dependent degradation behavior and T2-weighted MRI effect revealed that the as-prepared Fe-LDH/DOX is sensitive to the tumor acid microenvironment. Most importantly, the growth rate of tumors in 4T1 bearing mice could be effectively inhibited after the synergistic treatment of PTT and chemotherapy by Fe-LDH/DOX. These results show that doping functional metal ions into LDH NPs may open a novel approach to fabricating an LDH NP-based nanotheranostics platform with advanced diagnostic and therapeutic performances.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin , Female , Humans , Hydroxides , Mice , Phototherapy , Photothermal Therapy , Theranostic Nanomedicine , Tumor Microenvironment
7.
Small ; 15(16): e1900511, 2019 04.
Article in English | MEDLINE | ID: mdl-30913375

ABSTRACT

Transformable liquid metal (LM)-based materials have attracted considerable research interest in biomedicine. However, the potential biomedical applications of LMs have not yet been fully explored. Herein, for the first trial, the inductive heating property of gallium-indium eutectic alloy (EGaIn) under alterative magnetic field is systematically investigated. By virtue of its inherent metallic nature, LM possesses excellent magnetic heating property as compared to the conventional magnetite nanoparticles, therefore enabling its unique application as non-magnetic agents in magnetic hyperthermia. Moreover, the extremely high surface tension of LM could be dramatically lowered by a rather facile PEGylation approach, making LM an ideal carrier for other theranostic cargos. By incorporating doxorubicin (DOX)-loaded mesoporous silica (DOX-MS) within PEGylated LM, a magnetic field-driven transformable LM hybrid platform capable of pH/AFM dual stimuli-responsive drug release and magnetic thermochemotherapy are successfully fabricated. The potential application for breast cancer treatment is demonstrated. Furthermore, the large X-ray attenuation ability of LM endows the hybrid with the promising ability for CT imaging. This work explores a new biomedical use of LM and a promising cancer treatment protocol based on LM hybrid for magnetic hyperthermia combined with dual stimuli-responsive chemotherapy and CT imaging.


Subject(s)
Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Hyperthermia, Induced/methods , Magnetic Fields , Theranostic Nanomedicine/methods , Animals , Biocompatible Materials , Drug Liberation , Female , Humans , MCF-7 Cells , Magnetics , Magnetite Nanoparticles , Metals/chemistry , Mice , Silicon Dioxide/chemistry
8.
Int J Nanomedicine ; 12: 7351-7363, 2017.
Article in English | MEDLINE | ID: mdl-29066887

ABSTRACT

PURPOSE: With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). METHODS: Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. RESULTS: Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. CONCLUSION: This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.


Subject(s)
Breast Neoplasms/therapy , Hyperthermia, Induced/methods , Melatonin/pharmacology , Nanocomposites/administration & dosage , Breast Neoplasms/metabolism , Cell Survival/drug effects , Combined Modality Therapy , Drug Liberation , Female , Ferric Compounds/chemistry , Humans , MCF-7 Cells , Magnetic Fields , Melatonin/administration & dosage , Nanocomposites/chemistry , Nanocomposites/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL