Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Language
Affiliation country
Publication year range
1.
Molecules ; 26(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443624

ABSTRACT

Peptide synthesis is an area with a wide field of application, from biomedicine to nanotechnology, that offers the option of simultaneously synthesizing a large number of sequences for the purpose of preliminary screening, which is a powerful tool. Nevertheless, standard protocols generate large volumes of solvent waste. Here, we present a protocol for the multiple Fmoc solid-phase peptide synthesis in tea bags, where reagent recycling steps are included. Fifty-two peptides with wide amino acid composition and seven to twenty amino acid residues in length were synthesized in less than three weeks. A clustering analysis was performed, grouping the peptides by physicochemical features. Although a relationship between the overall yield and the physicochemical features of the sequences was not established, the process showed good performance despite sequence diversity. The recycling system allowed to reduce N, N-dimethylformamide usage by 25-30% and reduce the deprotection reagent usage by 50%. This protocol has been optimized for the simultaneous synthesis of a large number of peptide sequences. Additionally, a reagent recycling system was included in the procedure, which turns the process into a framework of circular economy, without affecting the quality of the products obtained.


Subject(s)
Recycling/economics , Solid-Phase Synthesis Techniques/economics , Solid-Phase Synthesis Techniques/methods , Tea/chemistry , Chemical Phenomena , Cluster Analysis
2.
Electron. j. biotechnol ; Electron. j. biotechnol;52: 13-20, July. 2021. tab, graf, ilus
Article in English | LILACS | ID: biblio-1283173

ABSTRACT

BACKGROUND: In fish farming, the plant extracts containing antioxidant compounds have been added to the diet for enhancing pathogen resistance. In vitro studies evaluating the antioxidant effect of herbal extracts on fish cell models have focused on ROS production and the respiratory burst mechanism. However, the effects on enzymatic antioxidant defense on salmon leukocytes have not been evaluated. This study aims to evaluate the enzymatic antioxidant defense and ROS-induced cell damage in Salmon Head Kidney-1 (SHK-1) cell line exposed to polyphenol-enriched extract from Sambucus nigra flowers. RESULTS: Firstly, the Total Reactive Antioxidant Power (TRAP) assay of elderflower polyphenol (EP) was evaluated, showing 459 and 489 times more active than gallic acid and butyl hydroxy toluene (BHT), respectively. The toxic effect of EP on salmon cells was not significant at concentrations below 120 mg/ mL and no hemolysis activity was observed between 20 and 400 mg/mL. The treatment of SHK-1 cell line with EP decreased both the lipid peroxidation and protein oxidation induced by H2O2, which could be associated with decreasing oxidative stress in the SHK-1 cells since the GSH/GSSG ratio increased when only EP was added. CONCLUSIONS: These results suggest that plant extracts enriched with polyphenols could improve the enzymatic antioxidant defense of salmon leukocytes and protect the cells against ROS-induced cell damage


Subject(s)
Salmon , Plant Extracts/pharmacology , Sambucus nigra/chemistry , Polyphenols/pharmacology , Lipid Peroxidation , Free Radical Scavengers , Reactive Oxygen Species , Aquaculture , Oxidative Stress , Salmo salar , Disease Resistance , Leukocytes , Antioxidants
3.
Molecules ; 23(5)2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29702623

ABSTRACT

The elder (Sambucus spp.) tree has a number of uses in traditional medicine. Previous studies have demonstrated the antimicrobial properties of elderberry liquid extract against human pathogenic bacteria and also influenza viruses. These properties have been mainly attributed to phenolic compounds. However, other plant defense molecules, such as antimicrobial peptides (AMPs), may be present. Here, we studied peptide extracts from flowers of Sambucus nigra L. The mass spectrometry analyses determined peptides of 3 to 3.6 kDa, among them, cysteine-rich peptides were identified with antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens of Chilean aquaculture. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and SYTOX Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that these peptides exert their action by destroying the bacterial membrane.


Subject(s)
Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Blood Proteins/isolation & purification , Blood Proteins/pharmacology , Fishes/microbiology , Sambucus nigra/chemistry , Amino Acid Sequence , Animals , Aquaculture , Flowers/chemistry , Gram-Negative Bacteria/drug effects , Mass Spectrometry , Molecular Weight
4.
Appl Environ Microbiol ; 82(8): 2563-2571, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26896129

ABSTRACT

UNLABELLED: Infectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significant in vitro antiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens. IMPORTANCE: Identifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this pathogen has made prophylactic control extremely difficult. The identified antiviral peptide efficiently impairs ISAV infection in vitro by specifically blocking hemagglutinin-esterase, a pivotal surface protein of this virus. Peptide synthesis could further modify the primary structure of the identified peptide to improve specific activity and stability. The present results form the foundation for developing a new pharmacological treatment against ISAV.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Isavirus/drug effects , Peptides/chemical synthesis , Peptides/pharmacology , Animals , Cell Line , Drug Evaluation, Preclinical , Fishes , Isavirus/physiology , Peptide Library , Spodoptera , Viral Plaque Assay , Virus Attachment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL