Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Radiat Oncol ; 19(1): 33, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459584

ABSTRACT

BACKGROUND: Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data. METHODS: A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery. DISCUSSION: Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow. TRIAL REGISTRATION: NCT06106997.


Subject(s)
Brain Neoplasms , Deep Learning , Radiotherapy, Intensity-Modulated , Humans , Feasibility Studies , Retrospective Studies , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain/diagnostic imaging
2.
Int J Hyperthermia ; 40(1): 2248424, 2023.
Article in English | MEDLINE | ID: mdl-37611915

ABSTRACT

INTRODUCTION: Neoadjuvant chemotherapy and radiotherapy for the management of soft tissue sarcomas (STS) are still preferably delivered sequentially, with or without concurrent hyperthermia. Concurrent delivery of chemo-, radio- and thermotherapy may produce synergistic effects and reduce chemotherapy-free intervals. The few available studies suggest that concurrent chemoradiation (CRT) has a greater local effect. Data on the efficacy and toxicity of adding hyperthermia to CRT (CRTH) are sparse. MATERIALS AND METHODS: A cohort of 101 patients with STS of the extremities and trunk who received CRT (n = 33) or CRTH (n = 68) before resection of macroscopic tumor (CRT: n = 19, CRTH: n = 49) or re-resection following a non-oncological resection, so called 'whoops procedure', (CRT: n = 14, CRTH: n = 19) were included in this retrospective study. CRT consisted of two cycles of doxorubicine (50 mg/m2 on d2) plus ifosfamide (1500 mg/m2 on d1-5, q28) plus radiation doses of up to 60 Gy. Hyperthermia was delivered in two sessions per week. RESULTS: All patients received the minimum dose of 50 Gy. Median doses of ifosfamide and doxorubicin were comparable between CRT (75%/95%) and CRTH (78%/97%). The median number of hyperthermia sessions was seven. There were no differences in acute toxicities. Major wound complications occurred in 15% (CRT) vs. 25% (CRTH) (p = 0.19). In patients with macroscopic disease, the addition of hyperthermia resulted in a tendency toward improved remission: regression ≥90% occurred in 21/48 (CRTH) vs. 4/18 (CRT) patients (p = 0.197). With a median postoperative follow-up of 72 months, 6-year local control and overall survival rates for CRTH vs. CRT alone were 85 vs. 78% (p = 0.938) and 79 vs. 71% (p = 0.215). CONCLUSIONS: Both CRT and CRTH are well tolerated with an expected rate of wound complications. The results suggest that adding hyperthermia may improve tumor response.


Subject(s)
Hyperthermia, Induced , Sarcoma , Soft Tissue Neoplasms , Humans , Neoadjuvant Therapy , Ifosfamide , Retrospective Studies , Sarcoma/therapy , Soft Tissue Neoplasms/therapy , Hyperthermia , Chemoradiotherapy , Doxorubicin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL