Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240222

ABSTRACT

To investigate how different species or ploidy level of pollen donors affects the fruit quality of kiwifruit, flowers of 'Hayward' kiwifruit (a hexaploid Actinidia deliciosa cultivar, 6x) were hand-pollinated with pollen from ten different male donors. Kiwifruit plants pollinated with four distant species-M7 (2x, A. kolomikta), M8 (4x, A. arguta), M9 (4x, A. melanandra), and M10 (2x, A. eriantha)-had a low fruit-setting rate and therefore were not investigated further. Of the other six treatments, kiwifruit plants pollinated with M4 (4x, A. chinensis), M5 (6x, A. deliciosa) M6 (6x, A. deliciosa) had a larger fruit size and weight than those pollinated with M1 (2x, A. chinensis) and M2 (2x, A. chinensis). However, pollination with M1 (2x) and M2 (2x) resulted in seedless fruits, having few small and aborted seeds. Notably, these seedless fruits had higher fructose, glucose, and total sugar and lower citric acid content. This resulted in a higher sugar to acid ratio compared to fruits from plants pollinated with M3 (4x, A. chinensis), M4 (4x), M5 (6x), and M6 (6x). Most volatile compounds increased in the M1 (2x)- and M2 (2x)-pollinated fruit. A combination of principal component analysis (PCA), electronic tongue, and electronic nose suggested that the different pollen donors significantly affected the kiwifruit's overall taste and volatiles. Specifically, two diploid donors had the most positive contribution. This was in agreement with the findings from the sensory evaluation. In conclusion, the present study showed that the pollen donor affected the seed development, taste, and flavor quality of 'Hayward' kiwifruit. This provides useful information for improving the fruit quality and breeding of seedless kiwifruit.


Subject(s)
Actinidia , Fruit , Taste , Plant Breeding , Seeds , Pollen
2.
An Acad Bras Cienc ; 89(4): 2707-2717, 2017.
Article in English | MEDLINE | ID: mdl-29267793

ABSTRACT

6-Gingerol is the major active constituent of ginger. In the current study, we aimed to investigate the mechanisms underlying the effects of 6-Gingerol on hair growth. Mice were randomly divided into five groups; after hair depilation (day 0), mice were treated with saline, or different concentrations of 6-Gingerol for 11 days. The histomorphological characteristics of the growing hair follicles were examined after hematoxylin and eosin staining. The results indicated that 6-Gingerol significantly suppressed hair growth compared with that in the control group. And choose the concentration of 6-Gingerol at 1 mg/mL to treated with mice. Moreover, 6-Gingerol (1 mg/mL) significantly reduced hair re-growth ratio, hair follicle number, and hair follicle length, which were associated with increased expression of MMP2 and MMP9. Furthermore, the growth factors, such as EGF, KGF, VEGF, IGF-1 and TGF-ß participate in the hair follicle cycle regulation and regulate hair growth. We then measured the concentrations of them using ELISA assays, and the results showed that 6-Gingerol decreased EGF, KGF, VEGF, and IGF-1 concentrations, and increased TGF-ß concentration. Thus, this study showed that 6-Gingerol might act as a hair growth suppressive drug via induction of MMP2 and MMP9 expression, which could interfere with the hair cycle.


Subject(s)
Catechols/pharmacology , Fatty Alcohols/pharmacology , Hair Follicle/drug effects , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Plant Extracts/pharmacology , Animals , Enzyme Induction , Female , Fibroblast Growth Factor 7/biosynthesis , Hair Follicle/pathology , Insulin-Like Growth Factor I/biosynthesis , Male , Mice , Mice, Inbred C57BL , Random Allocation , Transforming Growth Factor beta/biosynthesis , Vascular Endothelial Growth Factor A/biosynthesis
3.
An. acad. bras. ciênc ; 89(4): 2707-2717, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-886861

ABSTRACT

ABSTRACT 6-Gingerol is the major active constituent of ginger. In the current study, we aimed to investigate the mechanisms underlying the effects of 6-Gingerol on hair growth. Mice were randomly divided into five groups; after hair depilation (day 0), mice were treated with saline, or different concentrations of 6-Gingerol for 11 days. The histomorphological characteristics of the growing hair follicles were examined after hematoxylin and eosin staining. The results indicated that 6-Gingerol significantly suppressed hair growth compared with that in the control group. And choose the concentration of 6-Gingerol at 1 mg/mL to treated with mice. Moreover, 6-Gingerol (1 mg/mL) significantly reduced hair re-growth ratio, hair follicle number, and hair follicle length, which were associated with increased expression of MMP2 and MMP9. Furthermore, the growth factors, such as EGF, KGF, VEGF, IGF-1 and TGF-β participate in the hair follicle cycle regulation and regulate hair growth. We then measured the concentrations of them using ELISA assays, and the results showed that 6-Gingerol decreased EGF, KGF, VEGF, and IGF-1 concentrations, and increased TGF-β concentration. Thus, this study showed that 6-Gingerol might act as a hair growth suppressive drug via induction of MMP2 and MMP9 expression, which could interfere with the hair cycle.


Subject(s)
Animals , Male , Female , Rabbits , Plant Extracts/pharmacology , Catechols/pharmacology , Hair Follicle/drug effects , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Fatty Alcohols/pharmacology , Insulin-Like Growth Factor I/biosynthesis , Random Allocation , Enzyme Induction , Transforming Growth Factor beta/biosynthesis , Hair Follicle/pathology , Vascular Endothelial Growth Factor A/biosynthesis , Fibroblast Growth Factor 7/biosynthesis , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL