Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
J Clin Invest ; 122(7): 2444-53, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22653059

ABSTRACT

Obesity-induced inflammation is a key component of systemic insulin resistance, which is a hallmark of type 2 diabetes. A major driver of this inflammation/insulin resistance syndrome is the accumulation of proinflammatory macrophages in adipose tissue and liver. We found that the orphan GPCR Gpr21 was highly expressed in the hypothalamus and macrophages of mice and that whole-body KO of this receptor led to a robust improvement in glucose tolerance and systemic insulin sensitivity and a modest lean phenotype. The improvement in insulin sensitivity in the high-fat diet-fed (HFD-fed) Gpr21 KO mouse was traced to a marked reduction in tissue inflammation caused by decreased chemotaxis of Gpr21 KO macrophages into adipose tissue and liver. Furthermore, mice lacking macrophage expression of Gpr21 were protected from HFD-induced inflammation and displayed improved insulin sensitivity. Results of in vitro chemotaxis studies in human monocytes suggested that the defect in chemotaxis observed ex vivo and in vivo in mice is also translatable to humans. Cumulatively, our data indicate that GPR21 has a critical function in coordinating macrophage proinflammatory activity in the context of obesity-induced insulin resistance.


Subject(s)
Diet, High-Fat/adverse effects , Insulin Resistance , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Bone Marrow Transplantation , Eating , Energy Metabolism , Epididymis/metabolism , Gene Expression Profiling , Glucose/metabolism , Hypothalamus/metabolism , Inflammation Mediators/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Liver/metabolism , Macrophages , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/pathology , Phenotype , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/metabolism , Sequence Deletion , Transcription, Genetic , Weight Gain
2.
Diabetes ; 59(1): 43-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19846801

ABSTRACT

OBJECTIVE: Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS: The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[(18)F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor-positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS: Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor-expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3-kinase inhibitor. CONCLUSIONS: Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.


Subject(s)
Body Temperature/physiology , Hyperthermia, Induced/methods , Insulin/pharmacology , Neurons/physiology , Adipose Tissue, Brown/physiology , Animals , Body Temperature/drug effects , Hypothalamus/drug effects , Hypothalamus/physiology , Injections , Insulin/administration & dosage , Male , Mice , Mice, Inbred C57BL , Preoptic Area/drug effects , Preoptic Area/physiology , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL