Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Hum Genet ; 101(2): 283-290, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757203

ABSTRACT

Lipoate serves as a cofactor for the glycine cleavage system (GCS) and four 2-oxoacid dehydrogenases functioning in energy metabolism (α-oxoglutarate dehydrogenase [α-KGDHc] and pyruvate dehydrogenase [PDHc]), or amino acid metabolism (branched-chain oxoacid dehydrogenase, 2-oxoadipate dehydrogenase). Mitochondrial lipoate synthesis involves three enzymatic steps catalyzed sequentially by lipoyl(octanoyl) transferase 2 (LIPT2), lipoic acid synthetase (LIAS), and lipoyltransferase 1 (LIPT1). Mutations in LIAS have been associated with nonketotic hyperglycinemia-like early-onset convulsions and encephalopathy combined with a defect in mitochondrial energy metabolism. LIPT1 deficiency spares GCS deficiency and has been associated with a biochemical signature of combined 2-oxoacid dehydrogenase deficiency leading to early death or Leigh-like encephalopathy. We report on the identification of biallelic LIPT2 mutations in three affected individuals from two families with severe neonatal encephalopathy. Brain MRI showed major cortical atrophy with white matter abnormalities and cysts. Plasma glycine was mildly increased. Affected individuals' fibroblasts showed reduced oxygen consumption rates, PDHc, α-KGDHc activities, leucine catabolic flux, and decreased protein lipoylation. A normalization of lipoylation was observed after expression of wild-type LIPT2, arguing for LIPT2 requirement in intramitochondrial lipoate synthesis. Lipoic acid supplementation did not improve clinical condition nor activities of PDHc, α-KGDHc, or leucine metabolism in fibroblasts and was ineffective in yeast deleted for the orthologous LIP2.


Subject(s)
Acyltransferases/genetics , Atrophy/pathology , Brain Diseases/genetics , Brain/pathology , Lipoylation/genetics , Mitochondria/metabolism , Amino Acids/metabolism , Brain/diagnostic imaging , Brain Diseases/pathology , Brain Mapping/methods , Cells, Cultured , Energy Metabolism/genetics , Energy Metabolism/physiology , Glycine/blood , Humans , Infant, Newborn , Magnetic Resonance Imaging , Mitochondria/genetics , Oxygen Consumption/genetics , Protein Binding/genetics , Thioctic Acid/metabolism
2.
PLoS Genet ; 10(11): e1004711, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25392908

ABSTRACT

Aldolase A deficiency has been reported as a rare cause of hemolytic anemia occasionally associated with myopathy. We identified a deleterious homozygous mutation in the ALDOA gene in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. The aldolase A deficiency was rescued by arginine supplementation in vitro but not by glycerol, betaine or benzylhydantoin, three other known chaperones, suggesting that arginine-mediated rescue operated by a mechanism other than protein chaperoning. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines, and reduced by dexamethasone. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease.


Subject(s)
Fever/genetics , Fructose-Bisphosphate Aldolase/genetics , Glycogen Storage Disease/genetics , Rhabdomyolysis/genetics , Anemia, Hemolytic/genetics , Anemia, Hemolytic/pathology , Arginine/metabolism , Dexamethasone/administration & dosage , Erythrocytes/pathology , Female , Fever/etiology , Fever/pathology , Fructose-Bisphosphate Aldolase/chemistry , Glycogen Storage Disease/pathology , Glycolysis , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myoblasts/metabolism , Myoblasts/pathology , Pedigree , Protein Conformation , Rhabdomyolysis/etiology , Rhabdomyolysis/pathology
3.
Orphanet J Rare Dis ; 8: 192, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341803

ABSTRACT

BACKGROUND: Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. METHODS: Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. RESULTS: Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. CONCLUSION: We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies.


Subject(s)
Acyltransferases/genetics , Leigh Disease/genetics , Amino Acids/blood , Amino Acids/cerebrospinal fluid , Amino Acids/urine , Carrier Proteins/genetics , Cells, Cultured , Fibroblasts/metabolism , Humans , Immunoblotting , Ketoglutarate Dehydrogenase Complex/deficiency , Ketoglutarate Dehydrogenase Complex/genetics , Ketone Oxidoreductases/deficiency , Ketone Oxidoreductases/genetics , Leigh Disease/blood , Leigh Disease/urine , Pyruvate Dehydrogenase (Lipoamide)/genetics , Thioctic Acid/blood , Thioctic Acid/cerebrospinal fluid , Thioctic Acid/urine
4.
Hum Immunol ; 65(5): 565-70, 2004 May.
Article in English | MEDLINE | ID: mdl-15172458

ABSTRACT

Cytomegalovirus (CMV) is responsible for significant morbidity and mortality in immunocompromised patients undergoing allogeneic hematopoietic stem cell transplantation. The limitations of antiviral drugs and a better understanding of the cellular immune response to CMV has lead to the development of alternative therapies that restore host cellular immunity to CMV. Infusion of donor T lymphocytes results in variable protection against CMV but a high incidence of graft-versus-host disease in the allogeneic setting. To prevent this complication and further improve anti-CMV immune response, several groups have developed new approaches, such as the introduction of a suicide gene to control alloreactivity against the host or the selective activation of CMV-specific T cells by antigen-presenting cells expressing CMV antigens introduced by gene transfer. Depending on the target cells and the strategy chosen, adenovirus, retrovirus or poxviruses derived vectors are used for gene transfer. The protocols as well as the preclinical and clinical results obtained in the field of anti-CMV immunotherapy using gene transfer are reported and discussed.


Subject(s)
Cytomegalovirus Infections/therapy , Genetic Therapy/methods , Immunotherapy/methods , T-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Infections/prevention & control , Dendritic Cells/immunology , Genes, Transgenic, Suicide/immunology , Genetic Vectors/genetics , Graft vs Host Disease/prevention & control , Graft vs Host Disease/therapy , Herpesvirus 4, Human/genetics , Humans , Immunocompromised Host/immunology , Leukocytes, Mononuclear/immunology , Phosphoproteins/genetics , Phosphoproteins/immunology , T-Lymphocytes, Cytotoxic/immunology , Thymidine Kinase/genetics , Transfection , Vaccination , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL