Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 67(12): 3400-3411, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30830771

ABSTRACT

Caffeine is a crucial secondary metabolic product in tea plants. Although the presence of caffeine in tea plants has been identified, the molecular mechanisms regulating relevant caffeine metabolism remain unclear. For the elucidation of the caffeine biosynthesis and catabolism in Camellia plants, fresh, germinated leaves from four Camellia plants with low (2), normal (1), and high (1) caffeine concentrations, namely, low-caffeine tea 1 (LCT1, Camellia crassicolumna), low-caffeine tea 2 (LCT2, C. crassicolumna), Shuchazao (SCZ, C. sinensis), and Yunkang 43 (YK43, C. sinensis) were used in this research. Transcriptome and purine alkaloids analyses of these Camellia leaves were performed using RNA-Seq and liquid chromatography-mass spectrometry (LC-MS). Moreover, 15N-caffeine tracing was performed to determine the metabolic fate of caffeine in leaves of these plants. Caffeine content was correlated with related gene expression levels, and a quantitative real-time (qRT) PCR analysis of specific genes showed a consistent tendency with the obtained transcriptomic analysis. On the basis of the results of stable isotope-labeled tracer experiments, we discovered a degradation pathway of caffeine to theobromine. These findings could assist researchers in understanding the caffeine-related mechanisms in Camellia plants containing low, normal, and high caffeine content and be applied to caffeine regulation and breeding improvement in future research.


Subject(s)
Caffeine/metabolism , Camellia sinensis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Caffeine/analysis , Camellia sinensis/chemistry , Camellia sinensis/genetics , Catechin/metabolism , Gene Expression Profiling , Plant Proteins/metabolism , Theobromine/metabolism
2.
Planta ; 249(2): 363-376, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30209617

ABSTRACT

MAIN CONCLUSION: A normal tea plant with one albino branch was discovered. RNA sequencing, albinism phenotype and ultrastructural observations provided a valuable understanding of the albino mechanism in tea plants. Tea plants with a specific color (white or yellow) have been studied extensively. A normal tea plant (Camellia sinensis cv. quntizhong) with one albino branch was discovered in a local tea plantation in Huangshan, Anhui, China. The pure albino leaves on this special branch had accumulated a fairly high content of amino acids, especially theanine (45.31 mg/g DW), and had a low concentration of polyphenols and an extremely low chlorophyll (Chl) content compared with control leaves. Ultrastructural observation of an albino leaf revealed no chloroplasts, whereas it was viable in the control leaf. RNA sequencing and differentially expressed gene (DEG) analysis were performed on the albino leaves and on control leaves from a normal green branch. The related genes involved in theanine and polyphenol biosynthesis were also investigated in this study. DEG expression patterns in Chl biosynthesis or degradation, carotenoid biosynthesis or degradation, chloroplast development, and biosynthesis were influenced in the albino leaves. Chloroplast deletion in albino leaves had probably destroyed the balance of carbon and nitrogen metabolism, leading to a high accumulation of free amino acids and a low concentration of polyphenols in the albino leaves. The obtained results can provide insight into the mechanism underlying this special albino branch phenotype, and are a valuable contribution toward understanding the albino mechanism in tea plants.


Subject(s)
Amino Acids/metabolism , Camellia sinensis/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Polyphenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL