Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Food Chem ; 439: 138101, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38043286

ABSTRACT

In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.


Subject(s)
Lactation , Linoleic Acids, Conjugated , Female , Cattle , Animals , Fatty Acids/metabolism , Milk/metabolism , Diet/veterinary , Goats/metabolism , Linoleic Acids, Conjugated/metabolism , Dietary Supplements
2.
J Dairy Sci ; 106(12): 9868-9878, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678795

ABSTRACT

Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (∼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.


Subject(s)
Cattle Diseases , Choline Deficiency , Female , Cattle , Animals , Choline Deficiency/metabolism , Choline Deficiency/veterinary , Lipid Droplets/metabolism , Choline/pharmacology , Choline/metabolism , Lactation/physiology , Liver/metabolism , Phospholipids/analysis , Dietary Supplements/analysis , Diet/veterinary , Rumen/metabolism , Milk/chemistry , Cattle Diseases/metabolism
3.
J Dairy Sci ; 105(11): 9179-9190, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36175227

ABSTRACT

Milk fat globule membrane (MFGM) proteins surround the triacylglycerol core comprising milk fat globules (MFG). We previously detected a decrease in the size of fat globules during conjugated linoleic acid (CLA)-induced milk fat depression (MFD), and other studies have reported that some MFGM proteins play a central role in regulating mammary cellular lipid droplet size. However, little is known about the relationship between MFD, MFG size, and MFGM proteins in bovine milk. The aim of this study was to investigate the profile of MFGM proteins during MFD induced by CLA. Sixteen mid-lactating Holstein cows (145 ± 24 d in milk) with similar body condition and parity were divided into control and CLA groups over a 10-d period. Cows were fed a basal diet (control, n = 8) or control plus 15 g/kg of dry matter (DM) CLA (n = 8) to induce MFD. Cow performance, milk composition, and MFG size were measured daily. On d 10, MFGM proteins were extracted and identified by quantitative proteomic analysis, and western blotting was used to verify a subset of the identified MFGM proteins. Compared with controls, supplemental CLA did not affect milk production, DM intake, or milk protein and lactose contents. However, CLA reduced milk fat content (3.73 g/100 mL vs. 2.47 g/100 mL) and the size parameters volume-related diameter D[4,3] (3.72 µm vs. 3.35 µm) and surface area-related diameter D[3,2] (3.13 µm vs. 2.80 µm), but increased specific surface area of MFG (1,905 m2/kg vs. 2,188 m2/kg). In total, 177 differentially expressed proteins were detected in milk from cows with CLA-induced MFD, 60 of which were upregulated and 117 downregulated. Correlation analysis showed that MFG size was negatively correlated with various proteins, including XDH and FABP3, and positively correlated with MFG-E8, RAB19, and APOA1. The results provide evidence for an important role of MFGM proteins in regulating MFG diameter, and they facilitate a mechanistic understanding of diet-induced MFD.


Subject(s)
Linoleic Acids, Conjugated , Pregnancy , Female , Cattle , Animals , Linoleic Acids, Conjugated/pharmacology , Lipid Droplets/metabolism , Lactation , Lactose , Membrane Proteins , Proteomics , Depression , Fatty Acids/metabolism , Milk Proteins/analysis , Triglycerides
4.
Biol Trace Elem Res ; 199(1): 113-119, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32328970

ABSTRACT

Supplementation with selenium is common for dairy cows, but the importance of selenium source is not clear. This study aimed to compare nano-selenium (Nano-Se) and sodium selenite supplements for dairy cows on lactation performance, milk Se levels and selenoprotein (Sel) gene expression. Twelve multiparous Holstein cows were randomly divided into two groups: a control group fed a basal diet plus 0.30 mg Se/kg of DM as sodium selenite or Nano-Se for 30 days. Dry matter intake, milk yield and composition were not affected by dietary Se source (P > 0.05); however, the milk total Se levels and milk glutathione peroxidase (GSH-Px) activities were higher with Nano-Se supplementation than sodium selenite (P < 0.05). At the end of the experiment, Nano-Se supplementation significantly increased plasma Se levels and GSH-Px activity, compared with the sodium selenite supplement. The mRNA expression levels of glutathione peroxidase 1, 2 and 4; thioredoxin reductase 2 and 3; and selenoproteins W, T, K and F were markedly upregulated (P < 0.05) in the mammary gland of the Nano-Se group. Thus, the source of selenium plays an important role in the antioxidant status and in particular the Sel gene expression in the mammary glands of dairy cows, both being stimulated by nano sources.


Subject(s)
Milk , Selenium , Animal Feed/analysis , Animals , Cattle , Dietary Supplements , Female , Glutathione Peroxidase/genetics , Lactation , Selenium/pharmacology , Selenoproteins/genetics , Transcriptome
5.
PLoS One ; 14(8): e0214903, 2019.
Article in English | MEDLINE | ID: mdl-31390361

ABSTRACT

This study aimed to evaluate the effects of a high dose of conjugated linoleic acid (CLA) on lactating mice. In one experiment, Kunming mice were separated into four groups (n = 6 per group); the control (CON) group received 3.0% linoleic acid (LA) oil, the L-CLA group received a mixture of 2.0% LA and 1.0% CLA, the M-CLA group received a mixture of 1.0% LA and a 2.0% CLA, and the H-CLA group received 3.0% CLA. Feeding proceeded from day 4 to day 10 of lactation. In a second experiment, a CON group received 3.0% LA, and an H-CLA group received 3.0% CLA. Plasma parameters were analyzed for all groups, and insulin tolerance tests (ITTs) were conducted. CLA treatment did not affect dam weight but significantly decreased the food intake of dams during lactation. Furthermore, CLA decreased the weight of pups on day 10 of lactation; this effect was attributed to lower milk fat of dams in the CLA group than in those of the other groups. Relative to mice in the CON group, the mice in the H-CLA group displayed increased liver weight and liver triglyceride (TG) content as well as higher TG content and γ-glutamyl transferase (γ-GT) activity in the plasma. Moreover, high-dose CLA resulted in insulin resistance, possibly affecting the red blood cell (RBC) and hemoglobin (HCB) levels in the plasma. In conclusion, lactating mice receiving a high dose of CLA exhibited fatty liver, insulin resistance, and impaired lactation performance.


Subject(s)
Fatty Liver/prevention & control , Insulin Resistance , Lactation , Linoleic Acids, Conjugated/pharmacology , Animals , Body Weight/drug effects , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Eating/drug effects , Fatty Liver/metabolism , Linoleic Acids, Conjugated/analysis , Liver/drug effects , Liver/metabolism , Mice , Milk/drug effects , Milk/metabolism
6.
Biochem Biophys Res Commun ; 422(4): 621-6, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22609209

ABSTRACT

Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor α (TNFα) and the positive regulator Peroxisome Proliferator-Activated Receptor-γ (PPARγ) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.


Subject(s)
Adipose Tissue, White/drug effects , Carrier Proteins/genetics , Epididymis/drug effects , Gene Expression Regulation/drug effects , Linoleic Acids, Conjugated/administration & dosage , Lipolysis/drug effects , Phosphoproteins/genetics , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Body Weight/drug effects , Carrier Proteins/antagonists & inhibitors , Dietary Supplements , Eating , Epididymis/metabolism , Male , Mice , Perilipin-1 , Phosphoproteins/antagonists & inhibitors , Promoter Regions, Genetic
7.
Article in Chinese | MEDLINE | ID: mdl-18630562

ABSTRACT

OBJECTIVE: To summarize the technique and effect of the therapy for severe fracture and dislocation of ankle joint by operation. METHODS: From March 2003 to February 2006, 76 cases were treated with primary open restoration and internal fixation for dislocated ankle joint fracture, with 47 males and 29 females, with the average age of 36.4 years (ranging from 18 years to 65 years). According to AO criterion, these fresh fractures were classified into 13 cases for type C3-1, 45 cases for type C3-2 and 18 cases for type C3-3. Based on the Gustilo-Anderson standard, 23 open fractures were classified into 17 cases for type II and 6 cases for type III A. The operation was delayed from 1 hours to 24 hours after the injury. RESULTS: All incisions healed at the first stage except 4 cases which delayed union because of simple infection by revision with ointment. A total of 72 cases were followed up, with the average time of 18.5 months (from 12 months to 35 months). The time of bone union was from 12 weeks to 24 weeks. The screws of fixation for lower tibia-fibula joint were found to be ruptured in 2 cases when further consultation was performed in the 16th and 20th week after the operation, respectively, and were broken within 1 year after the operation. These screws were taken out 12 weeks postoperative in 28 cases, while the whole internal fixations of the rest cases were taken out 1 year after the operation. The postoperative function of malleolus extended from 21.7 degrees to 26.8 degrees and flection from 38.5 degrees to 44.7 degrees. Assessed by the American Orthopaedic Foot and Ankle Society Clinical Rating Scales, 23 cases were excellent, 36 good, 13 fair, and the choiceness rate reached 81.94%. CONCLUSION: These procedures, together with reduction by twist after hospital, open and internal fixation in time, and parenchyma managed with internal fixation, are important to attain satisfactory effect for the treatment of severe fracture and dislocation of ankle joint.


Subject(s)
Ankle Injuries/surgery , Ankle Joint , Joint Dislocations/surgery , Adolescent , Adult , Aged , Decompression, Surgical , Female , Fracture Fixation, Internal , Humans , Male , Manipulation, Osteopathic , Middle Aged , Plastic Surgery Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL