Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Comb Chem High Throughput Screen ; 27(1): 157-167, 2024.
Article in English | MEDLINE | ID: mdl-37366364

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a commonly diagnosed female cancer around the world. The Chinese herbal medicine Brucea Javanica has an anti-cancer effect. However, there is no relevant report on whether Brucea Javanica is effective in treating OC, and the corresponding mechanism is also unknown. OBJECTIVE: This study was projected to excavate the active components and underpinned molecular mechanisms of Brucea Javanica in treating ovarian cancer (OC) through network pharmacology combined with in vitro experiments. METHODS: The essential active components of Brucea Javanica were selected using the TCMSP database. The OC-related targets were selected by GeneCards, intersecting targets were obtained by Venn Diagram. The core targets were obtained through the PPI network and Cytoscape, and the key pathway was gained through GO and KEGG enrichment analyses. Meanwhile, docking conformation was observed as reflected by molecular docking. MTT, colony formation assay and flow cytometer (FCM) analysis were performed to determine cell proliferation and apoptosis, respectively. Finally, Levels of various signaling proteins were evaluated by western blotting. RESULTS: Luteolin, ß-sitosterol and their corresponding targets were selected as the essential active components of Brucea Javanica. 76 intersecting targets were obtained by Venn Diagram. TP53, AKT1, and TNF were obtained through the PPI network and Cytoscape, and the key pathway PI3K/AKT was gained through GO and KEGG enrichment analyses. A good docking conformation was observed between luteolin and AKT1. Luteolin could hinder A2780 cell proliferation, induce cell apoptosis and enhance the inhibition of the PI3K/AKT pathway. CONCLUSION: It was verified in vitro that luteolin could hinder OC cell proliferation and activate the PI3K/AKT pathway to lead to apoptosis.


Subject(s)
Drugs, Chinese Herbal , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Luteolin/pharmacology , Network Pharmacology , Brucea javanica , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology
2.
Chemosphere ; 251: 126358, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32155493

ABSTRACT

Acidic substances, which produced during chlorinated volatile organic compounds, will corrode the commonly used packing materials, and then affect the removal performance of biofiltration. In this study, three biofilters with different filter bed structure were established to treat gaseous chlorobenzene. CaCO3 and 3D matrix material was added in filter bed as pH buffering material and filter bed supporting material, respectively. A comprehensive investigation of removal performance, biomass accumulation, microbial community, filter bed height, voidage, pressure drops, and specific surface area of the three biofilters was compared. The biofilter with CaCO3 and 3D matrix material addition presented stable removal performance and microbial community, and greater biomass density (209.9 kg biomass/m3 filter bed) and growth rate (0.033 d-1) were obtained by using logistic equation. After 200 days operation, the height, voidage, pressure drop, specific surface area of the filter bed consisted of perlite was 27.4 cm, 0.39, 32.8 Pa/m, 974,89 m2/m3, while those of the filter bed with CaCO3 addition was 28.2 cm, 0.43, 21.3 Pa/m, and 1021.03 m2/m3, and those of the filter bed with CaCO3 and 3D matrix material addition was 28.7 cm, 0.55, 17.4 Pa/m, and 1041.60 m2/m3. All the results verified the biofilter with CaCO3 and 3D matrix material addition is capable of sustaining the long-term performance of biofilters. CaCO3 could limit the changes of removal efficiency, microbial community and filter bed structure by buffering the pH variation. And 3D matrix material could maintain the filter bed structure by supporting the filter bed, regardless of the buffering effect.


Subject(s)
Chlorobenzenes/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Aluminum Oxide , Biomass , Filtration/methods , Gases , Hydrogen-Ion Concentration , Silicon Dioxide , Volatile Organic Compounds/chemistry
3.
Sci Total Environ ; 640-641: 1447-1454, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30021311

ABSTRACT

The traditional one-liquid phase biofilter (OLPB), with water as the selected liquid phase, demonstrated low performance to volatile hydrophobic organic compounds. In this study, a novel two-liquid phase biofilter (TLPB) using silicone oil and water was established to treat gaseous dichloromethane (DCM). A comprehensive investigation of removal performance, kinetic analysis, biomass accumulations, pressure drops, CO2 productions, and microbial communities of the two biofilters was compared. Results showed that TLPB presented an average removal efficiency of 85% during 200 days of operation, which was higher than that of OLPB (63%). Owing to the buffering effects caused by silicone oil, TLPB demonstrated a superior fluctuation resistance capability than OLPB. TLPB was determined at a higher actual mass distribution coefficient of 6.00 than that of the OLPB (3.99), thereby suggesting a significantly more effective mass transfer process inside TLPB compared with that in OLPB. Furthermore, a rapid biomass accumulation process was observed in TLPB. The specific growth rates of biomass in OLPB and TLPB were calculated as 0.035 and 0.026 g of dry biomass/g of dry filter per day, respectively. The carbon balances were analyzed in the two biofilters. The yield coefficients (Y) were determined at 1.449 and 1.143 g of dry biomass/g of removed VOC for OLPB and TLPB, respectively. However, the corresponding CO2 production fraction was 0.263 g and 0.316 g per 1 g of DCM for OLPB and TLPB, respectively. The variations in fraction of carbon in DCM transformation to biomass and to CO2 suggested distinct microbial transformation pathways of utilizing DCM in the two biofilters, which were mainly caused by the different microbial communities and metabolic activities.

SELECTION OF CITATIONS
SEARCH DETAIL