Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 14: 1148155, 2023.
Article in English | MEDLINE | ID: mdl-36998615

ABSTRACT

Metformin as an oral glucose-lowering drug is used to treat type 2 diabetic mellitus. Considering the relatively high incidence of cardiovascular complications and other metabolic diseases in diabetic mellitus patients, a combination of metformin plus herbal supplements is a preferrable way to improve the therapeutic outcomes of metformin. Ginseng berry, the fruit of Panax ginseng Meyer, has investigated as a candidate in metformin combination mainly due to its anti-hyperglycemic, anti-hyperlipidemic, anti-obesity, anti-hepatic steatosis and anti-inflammatory effects. Moreover, the pharmacokinetic interaction of metformin via OCTs and MATEs leads to changes in the efficacy and/or toxicity of metformin. Thus, we assessed how ginseng berry extract (GB) affects metformin pharmacokinetics in mice, specially focusing on the effect of the treatment period (i.e., 1-day and 28-day) of GB on metformin pharmacokinetics. In 1-day and 28-day co-treatment of metformin and GB, GB did not affect renal excretion as a main elimination route of metformin and GB therefore did not change the systemic exposure of metformin. Interestingly, 28-day co-treatment of GB increased metformin concentration in the livers (i.e., 37.3, 59.3% and 60.9% increases versus 1-day metformin, 1-day metformin plus GB and 28-day metformin groups, respectively). This was probably due to the increased metformin uptake via OCT1 and decreased metformin biliary excretion via MATE1 in the livers. These results suggest that co-treatment of GB for 28 days (i.e., long-term combined treatment of GB) enhanced metformin concentration in the liver as a pharmacological target tissue of metformin. However, GB showed a negligible impact on the systemic exposure of metformin in relation to its toxicity (i.e., renal and plasma concentrations of metformin).

2.
J Ethnopharmacol ; 238: 111892, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31004727

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Flower and flower bud of Lonicera japonica, Lonicerae Flos, have been popularly used as medicinal plant for the treatment of clearing heat and thirst, thereby improving diabetic or diabetic associated symptoms (thirst and poor eyesight). AIM OF THE STUDY: Organic cation transporters (OCTs) and multi-drug and toxin extrusion proteins (MATEs) are known to play important roles in metformin transport in the liver and kidneys. Thus, there might be interactions between Lonicerae Flos and metformin via OCTs and MATEs. Also treatment period has been issued in transporter-mediated drug interactions. The objective of this study was to determine the effect of Lonicerae Flos ethanol extract (LJ) on metformin pharmacokinetics and its glucose lowering activity in different treatment periods. MATERIALS AND METHODS: Effect of LJ on metformin uptake was evaluated in vitro HEK-293 cells expressing human OCTs or MATEs. Treatment period-dependent impact of LJ on systemic exposure and hepatic distribution of metformin as well as its glucose tolerance activity were assessed in in vivo rats. RESULTS: LJ substantially inhibited MATE1-mediated metformin uptake in vitro. In evaluating treatment period effects of LJ and metformin, 1-, 7-, and 28-day co-treatments of LJ with metformin did not change systemic exposure of metformin compared to those in metformin alone. Whereas, 28-day co-treatment of LJ with metformin increased metformin concentration in liver as a pharmacological target site of metformin. It could be due to the reduced MATE1-mediated metformin efflux from hepatocytes to bile by MATE1 inhibition in liver. Glucose tolerance activity was also enhanced by 28-day co-treatment of LJ and metformin compared to metformin alone. CONCLUSIONS: In 28-day co-treatment of LJ and metformin, LJ increased metformin concentration in liver and improved glucose tolerance activity without systemic exposure change of metformin, suggesting the importance to consider treatment period effect and both systemic exposure and tissue distribution in drug interactions.


Subject(s)
Liver/metabolism , Lonicera/chemistry , Metformin/pharmacokinetics , Plant Extracts/pharmacokinetics , Animals , Drug Interactions , HEK293 Cells , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Male , Metformin/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Tissue Distribution
3.
PLoS One ; 10(7): e0131587, 2015.
Article in English | MEDLINE | ID: mdl-26176540

ABSTRACT

The information about a marker compound's pharmacokinetics in herbal products including the characteristics of absorption, distribution, metabolism, excretion (ADME) is closely related to the efficacy/toxicity. Also dose range and administration route are critical factors to determine the ADME profiles. Since the supply of a sufficient amount of a marker compound in in vivo study is still difficult, pharmacokinetic investigations which overcome the limit of blood collection in mice are desirable. Thus, we have attempted to investigate concurrently the ADME and proposed metabolite identification of α-mangostin, a major constituent of mangosteen, Garcinia mangostana L, in mice with a wide dose range using an in vitro as well as in vivo automated micro-sampling system together. α-mangostin showed dose-proportional pharmacokinetics at intravenous doses of 5-20 mg/kg and oral doses of 10-100 mg/kg. The gastrointestinal absorption of α-mangostin was poor and the distribution of α-mangostin was relatively high in the liver, intestine, kidney, fat, and lung. α-mangostin was extensively metabolized in the liver and intestine. With regards to the formation of metabolites, the glucuronidated, bis-glucuronidated, dehydrogenated, hydrogenated, oxidized, and methylated α-mangostins were tentatively identified. We suggest that these dose-independent pharmacokinetic characteristics of α-mangostin in mice provide an important basis for preclinical applications of α-mangostin as well as mangosteen. In addition, these experimental methods can be applied to evaluate the pharmacokinetics of natural products in mice.


Subject(s)
Anti-Allergic Agents/pharmacokinetics , Garcinia mangostana/chemistry , Xanthones/pharmacokinetics , Administration, Oral , Animals , Anti-Allergic Agents/administration & dosage , Chromatography, Liquid , Drug Evaluation, Preclinical , Inactivation, Metabolic , Male , Mice, Inbred ICR , Tandem Mass Spectrometry , Tissue Distribution , Xanthones/administration & dosage
4.
Food Chem Toxicol ; 66: 140-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24472368

ABSTRACT

The commercially available herbal products as the form of extract were usually mixtures containing various compounds. In spite of the purported efficacy in each active constituent, the coexisting constituents in the herbal extract might interfere with the efficacy and safety and affect the pharmacokinetic properties of active constituents. To compare for the pharmacokinetic properties of α-mangostin, a major bioactive compound, in mangosteen extract and pure α-mangostin, the pharmacokinetics as well as tissue distribution, in vitro metabolism, plasma protein binding and safety evaluation were conducted in mice because a mouse model is required a small amount of compounds and useful to develop disease models. The absorption of α-mangostin was increased and hepatic metabolism of α-mangostin was decreased in mice treated with mangosteen extract. However, the intestinal metabolism α-mangostin is comparable and still extensive in mice treated with α-mangostin and mangosteen extract. Intraperitorial LC50 of α-mangostin and mangosteen extract was 150 and 231 mg/kg, respectively. These findings may be valuable to explain the different pharmacokinetics and safety of α-mangostin and mangosteen extract. Furthermore, these findings are useful to design the efficacy and safety investigation of α-mangostin or mangosteen extract in mice with disease models or combination therapies to extrapolate into the clinical levels.


Subject(s)
Garcinia mangostana/chemistry , Plant Extracts/pharmacokinetics , Xanthones/pharmacokinetics , Animals , Blood Proteins/metabolism , Lethal Dose 50 , Male , Mice , Mice, Inbred ICR , Models, Animal , Plant Extracts/adverse effects , Tissue Distribution , Xanthones/adverse effects
5.
Arch Pharm Res ; 35(3): 509-16, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22477198

ABSTRACT

Paclitaxel is a P-gp substrate and metabolized via CYP2C and 3A subfamily in rats. It has been reported that cysteine causes the changes in expression of CYP isozymes and intestinal P-gp mediated efflux activity in rats. Thus, the effects of cysteine on the pharmacokinetics of intravenous and oral paclitaxel were investigated in rats. After intravenous administration of paclitaxel (30 mg/kg) to control (CON), single cysteine treatment (ST) and cysteine treatment for a week (CT) rats, the pharmacokinetic parameters were comparable among three groups of rats. Also the pharmacokinetic parameters between CON and ST rats were comparable after oral administration of paclitaxel (30 mg/kg) to rats. These results are consistent with that oral cysteine supplement on a single day did not considerably inhibit the metabolism of paclitaxel via hepatic and/or intestinal CYP3A subfamily and P-gp mediated efflux of paclitaxel in the liver and/or intestine both after intravenous and oral administration to rats. After oral administration of paclitaxel (30 mg/kg) to rats, the greater AUC(06 h) in CT rats was mainly due to that oral cysteine supplement for seven consecutive days enhanced the gastrointestinal absorption of paclitaxel compared with those in CON and ST rats.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacokinetics , Cysteine/pharmacology , Paclitaxel/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/blood , Area Under Curve , Biotransformation , Cysteine/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Injections, Intravenous , Intestinal Mucosa/metabolism , Intestines/drug effects , Male , Metabolic Clearance Rate , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Paclitaxel/administration & dosage , Paclitaxel/blood , Protein Binding , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL