Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 70(1): 184-195, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35016506

ABSTRACT

The mechanisms of coffee against Parkinson disease (PD) remained incompletely elucidated. Numerous studies suggested that gut microbiota played a crucial role in the pathogenesis of PD. Here, we explored the further mechanisms of coffee against PD via regulating gut microbiota. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD mouse model, then treated with coffee for 4 consecutive weeks. Behavioral tests consisting of the pole test and beam-walking test were conducted to evaluate the motor function of mice. The levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) were assessed for dopaminergic neuronal loss. The levels of occludin, glial fibrillary acidic protein (GFAP), Bcl-2, Bax, cleaved caspase-3, and cytochrome c (Cyt c) were detected. Moreover, microbial components were measured by 16s rRNA sequencing. Our results showed that coffee significantly improved the motor deficits and TH neuron loss, and reduced the level of α-syn in the MPTP-induced mice. Moreover, coffee increased the level of BBB tight junction protein occludin and reduced the level of astrocyte activation marker GFAP in the MPTP-induced mice. Furthermore, coffee significantly decreased the levels of proapoptotic proteins, including Bax, cleaved caspase-3, and cytochrome c, while it increased the level of antiapoptotic protein Bcl-2, consequently preventing MPTP-induced apoptotic cascade. Moreover, coffee improved MPTP-induced gut microbiota dysbiosis. These findings suggested that the neuroprotective effects of coffee on PD were involved in the regulation of gut microbiota, which might provide a novel option to elucidate the effects of coffee on PD.


Subject(s)
Gastrointestinal Microbiome , Neuroprotective Agents , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Coffee , Disease Models, Animal , Dopaminergic Neurons , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S
2.
ACS Appl Mater Interfaces ; 9(7): 6644-6651, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28150931

ABSTRACT

Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.


Subject(s)
Nanowires , Electric Conductivity , Hardness , Hot Temperature , Hyperthermia, Induced , Membranes, Artificial , Oxidation-Reduction , Silver , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL