Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cells ; 10(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34685712

ABSTRACT

Alcohol-related liver disease (ALD) is characterized by accumulation of hepatic free fatty acids (FFAs) and liver injury. The present study aimed to investigate if mechanistic target of rapamycin complex 1 (mTORC1) plays a role in FFA-induced organelle dysfunction, thereby contributing to the development of ALD. Cell studies were conducted to define the causal role and underlying mechanism of FFA-activated mTORC1 signaling in hepatocellular cell injury. C57BL/6J wild-type mice were subjected to chronic alcohol feeding with or without rapamycin to inhibit mTORC1 activation. We revealed that palmitic acid (PA)-induced ER stress and suppression of LAMP2 and autophagy flux were mTORC1-dependent as rapamycin reversed such deleterious effects. C/EBP homologous protein (CHOP) was downstream of ATF4 which partially modulated LAMP2. Supplementation with rapamycin to alcohol-fed mice attenuated mTORC1 activation and ER stress, restored LAMP2 protein, and improved autophagy, leading to amelioration of alcohol-induced liver injury. Induction of mTORC1 signaling and CHOP were also detected in the liver of patients with severe alcoholic hepatitis. This study demonstrates that hepatic FFAs play a crucial role in the pathogenesis of ALD by activating mTORC1 signaling, thereby inducing ER stress and suppressing LAMP2-autophagy flux pathway, which represents an important mechanism of FFA-induced hepatocellular injury.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Ethanol/adverse effects , Fatty Acids, Nonesterified/pharmacology , Liver Diseases/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Activating Transcription Factor 4/metabolism , Animals , Autophagy/drug effects , Cell Line, Tumor , Dietary Supplements , Endoplasmic Reticulum Stress/drug effects , Hepatitis, Alcoholic/metabolism , Hepatitis, Alcoholic/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mice, Inbred C57BL , Palmitic Acid/pharmacology , Signal Transduction/drug effects , Sirolimus/pharmacology , Transcription Factor CHOP/metabolism
2.
Cell Mol Gastroenterol Hepatol ; 12(3): 793-811, 2021.
Article in English | MEDLINE | ID: mdl-34082111

ABSTRACT

BACKGROUND & AIMS: Aryl hydrocarbon receptor (AhR) is a liver-enriched xenobiotic receptor that plays important role in detoxification response in liver. This study aimed to investigate how AhR signaling may impact the pathogenesis of alcohol-related liver disease (ALD). METHODS: Chronic alcohol feeding animal studies were conducted with mouse models of hepatocyte-specific AhR knockout (AhRΔhep) and NAD(P)H quinone dehydrogenase 1 (NQO1) overexpression, and dietary supplementation of the AhR ligand indole-3-carbinol. Cell studies were conducted to define the causal role of AhR and NQO1 in regulation of redox balance and apoptosis. RESULTS: Chronic alcohol consumption induced AhR activation and nuclear enrichment of NQO1 in hepatocytes of both alcoholic hepatitis patients and ALD mice. AhR deficiency exacerbated alcohol-induced liver injury, along with reduction of NQO1. Consistently, in vitro studies demonstrated that NQO1 expression was dependent on AhR. However, alcohol-induced NQO1 nuclear translocation was triggered by decreased cellular oxidized nicotinamide adenine dinucleotide (NAD+)-to-NADH ratio, rather than by AhR activation. Furthermore, both in vitro and in vivo overexpression NQO1 prevented alcohol-induced hepatic NAD+ depletion, thereby enhancing activities of NAD+-dependent enzymes and reversing alcohol-induced liver injury. In addition, therapeutic targeting of AhR in the liver with dietary indole-3-carbinol supplementation efficiently reversed alcoholic liver injury by AhR-NQO1 signaling activation. CONCLUSIONS: This study demonstrated that AhR activation is a protective response to counteract alcohol-induced hepatic NAD+ depletion through induction of NQO1, and targeting the hepatic AhR-NQO1 pathway may serve as a novel therapeutic approach for ALD.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Ethanol/adverse effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidation-Reduction , Receptors, Aryl Hydrocarbon/metabolism , Acetamides/metabolism , Animals , Apoptosis , Biomarkers , Cells, Cultured , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury, Chronic/etiology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Disease Models, Animal , Disease Susceptibility , Gene Expression , Gene Knockdown Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Immunophenotyping , Mice , Organ Specificity , Oxidative Stress
3.
Redox Biol ; 14: 626-636, 2018 04.
Article in English | MEDLINE | ID: mdl-29156373

ABSTRACT

Alcohol metabolism in the liver generates highly toxic acetaldehyde. Breakdown of acetaldehyde by aldehyde dehydrogenase 2 (ALDH2) in the mitochondria consumes NAD+ and generates reactive oxygen/nitrogen species, which represents a fundamental mechanism in the pathogenesis of alcoholic liver disease (ALD). A mitochondria-targeted lipophilic ubiquinone (MitoQ) has been shown to confer greater protection against oxidative damage in the mitochondria compared to untargeted antioxidants. The present study aimed to investigate if MitoQ could preserve mitochondrial ALDH2 activity and speed up acetaldehyde clearance, thereby protects against ALD. Male C57BL/6J mice were exposed to alcohol for 8 weeks with MitoQ supplementation (5mg/kg/d) for the last 4 weeks. MitoQ ameliorated alcohol-induced oxidative/nitrosative stress and glutathione deficiency. It also reversed alcohol-reduced hepatic ALDH activity and accelerated acetaldehyde clearance through modulating ALDH2 cysteine S-nitrosylation, tyrosine nitration and 4-hydroxynonenol adducts formation. MitoQ ameliorated nitric oxide (NO) donor-mediated ADLH2 S-nitrosylation and nitration in Hepa-1c1c7 cells under glutathion depletion condition. In addition, alcohol-increased circulating acetaldehyde levels were accompanied by reduced intestinal ALDH activity and impaired intestinal barrier. In accordance, MitoQ reversed alcohol-increased plasma endotoxin levels and hepatic toll-like receptor 4 (TLR4)-NF-κB signaling along with subsequent inhibition of inflammatory cell infiltration. MitoQ also reversed alcohol-induced hepatic lipid accumulation through enhancing fatty acid ß-oxidation. Alcohol-induced ER stress and apoptotic cell death signaling were reversed by MitoQ. This study demonstrated that speeding up acetaldehyde clearance by preserving ALDH2 activity critically mediates the beneficial effect of MitoQ on alcohol-induced pathogenesis at the gut-liver axis.


Subject(s)
Acetaldehyde/metabolism , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Liver Diseases, Alcoholic/prevention & control , Nitrosative Stress/drug effects , Organophosphorus Compounds/therapeutic use , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Ubiquinone/analogs & derivatives , Animals , Cell Line , Liver Diseases, Alcoholic/metabolism , Male , Mice, Inbred C57BL , Protein Processing, Post-Translational/drug effects , Ubiquinone/therapeutic use
4.
Int J Cardiol ; 168(3): 2548-60, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23602294

ABSTRACT

BACKGROUND: Limited studies have addressed the effects of calcium supplementation (CaS) on serum total cholesterol (TC) in postmenopausal women and the results are inconclusive. Moreover, the potential mechanisms through which CaS regulates cholesterol metabolism in the absence of estrogen are still sealed for the limitation of human being study. METHODS: Cross-sectional survey, animal and in vitro experiments were conducted to investigate the effect of CaS on endogenous cholesterol metabolism in estrogen deficiency and identify its potential mechanisms. Ovariectomized rats were used to mimic estrogen deficiency. In vitro, HepG2 cell line was exposed to estradiol and/or calcium treatment. RESULTS: We demonstrated that CaS significantly increased serum TC and the risk of hypercholesterolemia and myocardial infarction in postmenopausal women. Increased serum TC in estrogen deficiency was caused mainly by decreased cholesterol catabolism rather than increased synthesis. This was mediated by reduced 7α-hydroxylase resulting from increased liver intracellular Ca(2+) concentrations, reduced intracellular basal cAMP and subsequent up-regulation of SREBP-1c and SHP expression. Estrogen had a protective role in preventing CaS-induced TC increase by activating the G-protein coupled estrogen receptor, which mediated the estrogen effect through the transient receptor potential canonical 1 cation channel. CONCLUSIONS: CaS increases endogenous serum TC via decreasing hepatic cholesterol catabolism in estrogen deficiency. G-protein coupled estrogen receptor is shown to be a key target in mediating CaS-induced TC increase. CaS should be monitored for the prevention of serum TC increase during menopause.


Subject(s)
Calcium/administration & dosage , Cholesterol/blood , Estrogens/deficiency , Receptors, G-Protein-Coupled/physiology , TRPC Cation Channels/physiology , Animals , Cholesterol/metabolism , Cross-Sectional Studies , Dietary Supplements , Female , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL