Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Physiol Mol Biol Plants ; 29(12): 1959-1979, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38222284

ABSTRACT

Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01398-2.

2.
Mol Biol Rep ; 49(12): 11675-11684, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36178561

ABSTRACT

BACKGROUND: Disease-resistant cultivars are the best solution to get their maximum yield potential and avoid fungicide application. There is no doubt about the contribution, and use of R genes (resistance genes) in resistance development in plants, while S genes (susceptibility genes) also hold a strong position in pathogenesis by resistance repression, and their loss of function contributes to enhanced resistance. Hence, we attempted to knock out the function of the StERF3 gene in potatoes through CRISPR/Cas9-based genome editing and investigated the CRISPR/Cas9 approach as strategic control against late blight disease in potato plants. METHODS AND RESULTS: The StERF3 gene was edited in late blight susceptible cv. Lady Rosetta. Full allelic edited plants were identified through DnpI, and N1aIV mediated restriction digestion and then further analyzed through Indel Detection by Amplicon Analysis. Sequence analysis of targeted plants for indel identification showed full allelic editing. The detached leaf assay of full allelic edited plants demonstrated the role of the StERF3 gene in susceptibility to late blight in potatoes. In planta disease assay also showed reduced, slowed, and delayed disease progression in StERF3-loss-of-function mutants compared to wild-type (control) plants. Less fungal biomass was quantified in knockouts through Real-time qPCR that supported less susceptibility of edited plants to late blight. Besides, relatively high expression of pathogens-related genes, StPR1, and StNPR1, were also observed in StERF3-loss-of-function mutants compared to the corresponding control. CONCLUSION: The results showed the functional inhibition of StERF3 genes using the CRISPR/Cas9 approach. The functional knockouts (StERF3 gene-edited potato plants) revealed enhanced resistance against Phytophthora infestans, thereby demonstrating the best strategic control for late blight disease in potato plants.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Humans , Solanum tuberosum/genetics , CRISPR-Cas Systems/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Phytophthora infestans/genetics , Genes, Plant , Disease Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL