Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Mol Genet Metab ; 141(1): 108114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142628

ABSTRACT

Phenylketonuria is characterized by intellectual disability and behavioral, psychiatric, and movement disorders resulting from phenylalanine (Phe) accumulation. Standard-of-care treatment involves a Phe-restricted diet plus medical nutrition therapy (MNT), with or without sapropterin dihydrochloride, to reduce blood Phe levels. Pegvaliase is an injectable enzyme substitution treatment approved for adult patients with blood Phe >600 µmol/L despite ongoing management. A previous comparative effectiveness analysis using data from the Phase 3 PRISM trials of pegvaliase (NCT01819727 and NCT01889862) and the Phenylketonuria Demographics, Outcomes and Safety Registry (PKUDOS; NCT00778206) suggested that pegvaliase was more effective at lowering mean blood Phe levels than sapropterin + MNT or MNT alone at 1 and 2 years of treatment. The current work augments and complements the previous analysis by including additional follow-up from the completed studies, robust methods reflecting careful consideration of issues with the distribution of Phe, and alternative methods for adjustment that are important for control of potential confounding in comparative effectiveness. Median blood Phe levels were lower, and median intact protein intakes were higher, in the pegvaliase group (n = 183) than in the sapropterin + MNT (n = 82) and MNT (n = 67) groups at Years 1, 2, and 3. In the pegvaliase group, median blood Phe levels decreased from baseline (1244 µmol/L) to Year 1 (535 µmol/L), Year 2 (142 µmol/L), and Year 3 (167 µmol/L). In the sapropterin + MNT group, median blood Phe levels decreased from baseline (900 µmol/L) to Year 1 (588 µmol/L) and Year 2 (592 µmol/L), and increased at Year 3 (660 µmol/L). In the MNT group, median blood Phe levels decreased slightly from baseline (984 µmol/L) to Year 1 (939 µmol/L) and Year 2 (941 µmol/L), and exceeded baseline levels at Year 3 (1157 µmol/L). The model-estimated proportions of participants achieving blood Phe ≤600 µmol/L were 41%, 100%, and 100% in the pegvaliase group at Years 1, 2, and 3, respectively, compared with 55%, 58%, and 38% in the sapropterin + MNT group and 5%, 16%, and 0% in the MNT group. The estimated proportions of participants achieving more stringent blood Phe targets of ≤360 µmol/L and ≤120 µmol/L were also higher in the pegvaliase group than in the other groups at Years 2 and 3. Overall, our results indicate that, compared with standard therapy, pegvaliase induces a substantial, progressive, and sustained decrease in blood Phe levels - to a much greater extent than sapropterin + MNT or MNT alone - which is expected to improve long-term outcomes in patients with phenylketonuria.


Subject(s)
Biopterins/analogs & derivatives , Nutrition Therapy , Phenylketonurias , Adult , Humans , Phenylketonurias/therapy , Phenylalanine Ammonia-Lyase , Phenylalanine , Recombinant Proteins
2.
Nutrients ; 15(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764724

ABSTRACT

Many adults with phenylketonuria (PKU) rely on medical nutrition therapy (MNT; low phenylalanine (Phe) diet with protein substitutes/medical foods) to maintain blood Phe concentrations within recommended ranges and prevent PKU-associated comorbidities. Despite disease detection through newborn screening and introduction of MNT as early as birth, adherence to MNT often deteriorates from childhood onwards, complicating the assessment of its effectiveness in the long term. Via a modified Delphi process, consensus (≥70% agreement) was sought on 19 statements among an international, multidisciplinary 13-member expert panel. After three iterative voting rounds, the panel achieved consensus on 17 statements related to the limitations of the long-term effectiveness of MNT (7), the burden of long-term reliance on MNT (4), and its potential long-term detrimental health effects (6). According to the expert panel, the effectiveness of MNT is limited in the long term, is associated with a high treatment burden, and demonstrates that adults with PKU are often unable to achieve metabolic control through dietary management alone, creating an unmet need in the adult PKU population.


Subject(s)
Nutrition Therapy , Phenylketonurias , Infant, Newborn , Adult , Humans , Child , Consensus , Phenylketonurias/therapy , Neonatal Screening
3.
J Inherit Metab Dis ; 43(6): 1232-1242, 2020 11.
Article in English | MEDLINE | ID: mdl-33448436

ABSTRACT

Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes. VLCAD-/- mice exhibited lower succinate in cardiac muscle at exhaustion than WT mice suggesting lower CACi in VLCAD-/- with prolonged exercise. In mice fed either MCT or triheptanoin, succinate and malate were greater in VLCAD-/- mice fed triheptanoin compared to VLCAD-/- animals fed MCT but lower than WT mice fed triheptanoin. Long-chain odd acylcarnitines such as C19 were elevated in VLCAD-/- and WT mice fed triheptanoin suggesting some elongation of the heptanoate, but it is unknown what proportion of heptanoate was oxidized vs elongated. Prolonged exercise was associated with decreased cardiac muscle succinate in VLCAD-/- mice in comparison to WT mice. VLCAD-/- fed triheptanoin had increased succinate compared to VLCAD-/- mice fed MCT but lower than WT mice fed triheptanoin. Cardiac CACi were higher following dietary ingestion of an anaplerotic substrate, triheptanoin, in comparison to MCT.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Congenital Bone Marrow Failure Syndromes/diet therapy , Congenital Bone Marrow Failure Syndromes/metabolism , Lipid Metabolism, Inborn Errors/diet therapy , Lipid Metabolism, Inborn Errors/metabolism , Mitochondrial Diseases/diet therapy , Mitochondrial Diseases/metabolism , Muscular Diseases/diet therapy , Muscular Diseases/metabolism , Triglycerides/administration & dosage , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Animals , Citric Acid Cycle , Congenital Bone Marrow Failure Syndromes/genetics , Dietary Fats/administration & dosage , Fatty Acids/metabolism , Female , Lipid Metabolism, Inborn Errors/genetics , Liver/metabolism , Male , Mice , Mitochondrial Diseases/genetics , Muscular Diseases/genetics , Myocardium/metabolism , Oxidation-Reduction , Triglycerides/chemistry
4.
J Inherit Metab Dis ; 42(5): 857-869, 2019 09.
Article in English | MEDLINE | ID: mdl-31295363

ABSTRACT

Medical nutrition therapy for long-chain fatty acid oxidation disorders (LC-FAODs) currently emphasizes fasting avoidance, restricted dietary long-chain fatty acid intake, supplementation with medium chain triglycerides, and increased carbohydrate intake. We hypothesize that increasing dietary protein intake relative to carbohydrate intake would preserve metabolic control yet induce physical benefits including reduced hepatic lipogenesis. Therefore, we compared two dietary approaches with similar fat intake but different carbohydrate to protein ratios in participants diagnosed with LC-FAODs. Thirteen participants were enrolled and randomized into either a high-protein (PRO) or a high-carbohydrate (CHO) diet for 4 months. Baseline and 4-month assessments included body composition, ectopic lipid deposition, and resting energy expenditure. End of study assessments also included total energy expenditure, metabolic responses to oral feedings, and whole-body fatty acid oxidation capacity. At the end of the dietary intervention, both groups had similar energy expenditure, fat and glucose oxidation rates, and glucolipid responses to mixed meal and oral glucose loads. Neither dietary group experienced worsening symptoms related to their LC-FAOD. Compared to the CHO group, the PRO group exhibited increased blood levels of short-chain acylcarnitines, reduced intrahepatic lipid content, and maintained lean body mass while the CHO group lost lean mass. In patients with LC-FAODs, increasing protein intake maintained metabolic control, reduced liver fat without risk of metabolic decompensation, and helped preserve lean body mass. We propose that a modest increase in dietary protein along with fasting avoidance and fat restriction may improve body composition and energy expenditure in patients with LC-FAODs.


Subject(s)
Dietary Proteins/administration & dosage , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/diet therapy , Triglycerides/therapeutic use , Adolescent , Adult , Body Composition , Child , Dietary Carbohydrates/administration & dosage , Energy Metabolism , Female , Glucose/metabolism , Humans , Lipid Metabolism , Lipid Metabolism, Inborn Errors/metabolism , Liver/metabolism , Male , Oxidation-Reduction , Young Adult
5.
Mol Genet Metab ; 125(3): 251-257, 2018 11.
Article in English | MEDLINE | ID: mdl-30217721

ABSTRACT

INTRODUCTION: Glycerol phenylbutyrate (GPB) is approved in the US and EU for the chronic management of patients ≥2 months of age with urea cycle disorders (UCDs) who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB is a pre-prodrug, hydrolyzed by lipases to phenylbutyric acid (PBA) that upon absorption is beta-oxidized to the active nitrogen scavenger phenylacetic acid (PAA), which is conjugated to glutamine (PAGN) and excreted as urinary PAGN (UPAGN). Pharmacokinetics (PK) of GPB were examined to see if hydrolysis is impaired in very young patients who may lack lipase activity. METHODS: Patients 2 months to <2 years of age with UCDs from two open label studies (n = 17, median age 10 months) predominantly on stable doses of nitrogen scavengers (n = 14) were switched to GPB. Primary assessments included traditional plasma PK analyses of PBA, PAA, and PAGN, using noncompartmental methods with WinNonlin™. UPAGN was collected periodically throughout the study up to 12 months. RESULTS: PBA, PAA and PAGN rapidly appeared in plasma after GPB dosing, demonstrating evidence of GPB cleavage with subsequent PBA absorption. Median concentrations of PBA, PAA and PAGN did not increase over time and were similar to or lower than the values observed in older UCD patients. The median PAA/PAGN ratio was well below one over time, demonstrating that conjugation of PAA with glutamine to form PAGN did not reach saturation. Covariate analyses indicated that age did not influence the PK parameters, with body surface area (BSA) being the most significant covariate, reinforcing current BSA based dosing recommendations as seen in older patients. CONCLUSION: These observations demonstrate that UCD patients aged 2 months to <2 years have sufficient lipase activity to adequately convert the pre-prodrug GPB to PBA. PBA is then converted to its active moiety (PAA) providing successful nitrogen scavenging even in very young children.


Subject(s)
Glycerol/analogs & derivatives , Lipase/blood , Phenylbutyrates/administration & dosage , Prodrugs/administration & dosage , Urea Cycle Disorders, Inborn/drug therapy , Child , Child, Preschool , Female , Glutamine/blood , Glycerol/administration & dosage , Glycerol/blood , Glycerol/pharmacokinetics , Humans , Infant , Male , Nitrogen/blood , Nitrogen/metabolism , Phenylacetates/blood , Phenylbutyrates/blood , Phenylbutyrates/pharmacokinetics , Prodrugs/pharmacokinetics , Urea Cycle Disorders, Inborn/blood , Urea Cycle Disorders, Inborn/pathology
6.
J Inherit Metab Dis ; 41(4): 709-718, 2018 07.
Article in English | MEDLINE | ID: mdl-29520738

ABSTRACT

Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.


Subject(s)
Biopterins/analogs & derivatives , Brain/metabolism , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Serotonin/metabolism , Animals , Biopterins/pharmacology , Disease Models, Animal , Dopamine/metabolism , Humans , Mice , Mice, Mutant Strains , Neurotransmitter Agents/metabolism , Phenylalanine/blood , Phenylalanine/metabolism , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/genetics , Tryptophan Hydroxylase/metabolism , Tyrosine 3-Monooxygenase/metabolism
7.
J Inherit Metab Dis ; 40(6): 831-843, 2017 11.
Article in English | MEDLINE | ID: mdl-28871440

ABSTRACT

BACKGROUND: Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. METHODS: A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. RESULTS: Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. CONCLUSIONS: C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT01379625.


Subject(s)
Caprylates/therapeutic use , Cardiomyopathies/drug therapy , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Myopathies/drug therapy , Mitochondrial Trifunctional Protein/deficiency , Nervous System Diseases/drug therapy , Rhabdomyolysis/drug therapy , Triglycerides/therapeutic use , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Adolescent , Adult , Cardiomyopathies/metabolism , Carnitine/metabolism , Child , Dietary Fats/metabolism , Double-Blind Method , Exercise/physiology , Female , Humans , Lipid Metabolism, Inborn Errors/metabolism , Male , Middle Aged , Mitochondrial Myopathies/metabolism , Mitochondrial Trifunctional Protein/metabolism , Nervous System Diseases/metabolism , Oxidation-Reduction , Rhabdomyolysis/metabolism , Young Adult
8.
Mol Genet Metab ; 122(3): 46-53, 2017 11.
Article in English | MEDLINE | ID: mdl-28916119

ABSTRACT

INTRODUCTION: Glycerol phenylbutyrate (GPB) is approved in the US for the management of patients 2months of age and older with urea cycle disorders (UCDs) that cannot be managed with protein restriction and/or amino acid supplementation alone. Limited data exist on the use of nitrogen conjugation agents in very young patients. METHODS: Seventeen patients (15 previously on other nitrogen scavengers) with all types of UCDs aged 2months to 2years were switched to, or started, GPB. Retrospective data up to 12months pre-switch and prospective data during initiation of therapy were used as baseline measures. The primary efficacy endpoint of the integrated analysis was the successful transition to GPB with controlled ammonia (<100µmol/L and no clinical symptoms). Secondary endpoints included glutamine and levels of other amino acids. Safety endpoints included adverse events, hyperammonemic crises (HACs), and growth and development. RESULTS: 82% and 53% of patients completed 3 and 6months of therapy, respectively (mean 8.85months, range 6days-18.4months). Patients transitioned to GPB maintained excellent control of ammonia and glutamine levels. There were 36 HACs in 11 patients before GPB and 11 in 7 patients while on GPB, with a reduction from 2.98 to 0.88 episodes per year. Adverse events occurring in at least 10% of patients while on GPB were neutropenia, vomiting, diarrhea, pyrexia, hypophagia, cough, nasal congestion, rhinorrhea, rash/papule. CONCLUSION: GPB was safe and effective in UCD patients aged 2months to 2years. GPB use was associated with good short- and long-term control of ammonia and glutamine levels, and the annualized frequency of hyperammonemic crises was lower during the study than before the study. There was no evidence for any previously unknown toxicity of GPB.


Subject(s)
Ammonia/metabolism , Glutamine/metabolism , Glycerol/analogs & derivatives , Phenylbutyrates/adverse effects , Phenylbutyrates/therapeutic use , Urea Cycle Disorders, Inborn/drug therapy , Child, Preschool , Cough , Disease Management , Drug-Related Side Effects and Adverse Reactions , Female , Fever , Glutamine/drug effects , Glycerol/adverse effects , Glycerol/blood , Glycerol/therapeutic use , Glycerol/toxicity , Humans , Infant , Male , Neutropenia , Phenylbutyrates/blood , Phenylbutyrates/toxicity , Prospective Studies , Retrospective Studies
9.
Mol Genet Metab ; 117(1): 5-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26653793

ABSTRACT

Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism.


Subject(s)
Biopterins/analogs & derivatives , Brain/metabolism , Neurotransmitter Agents/metabolism , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Administration, Oral , Animals , Biopterins/administration & dosage , Biopterins/chemistry , Biopterins/therapeutic use , Disease Models, Animal , Dopamine/metabolism , Genotype , Homovanillic Acid/metabolism , Humans , Indoles/metabolism , Mice , Phenylalanine/blood , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Tyrosine 3-Monooxygenase/metabolism
10.
Hepatology ; 60(3): 1035-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24585515

ABSTRACT

UNLABELLED: Host immune response to viral vectors, persistence of nonintegrating vectors, and sustained transgene expression are among the major challenges in gene therapy. To overcome these hurdles, we successfully used minicircle (MC) naked-DNA vectors devoid of any viral or bacterial sequences for the long-term treatment of murine phenylketonuria, a model for a genetic liver defect. MC-DNA vectors expressed the murine phenylalanine hydroxylase (Pah) complementary DNA (cDNA) from a liver-specific promoter coupled to a de novo designed hepatocyte-specific regulatory element, designated P3, which is a cluster of evolutionary conserved transcription factor binding sites. MC-DNA vectors were subsequently delivered to the liver by a single hydrodynamic tail vein (HTV) injection. The MC-DNA vector normalized blood phenylalanine concomitant with reversion of hypopigmentation in a dose-dependent manner for more than 1 year, whereas the corresponding parental plasmid did not result in any phenylalanine clearance. MC vectors persisted in an episomal state in the liver consistent with sustained transgene expression and hepatic PAH enzyme activity without any apparent adverse effects. Moreover, 14-20% of all hepatocytes expressed transgenic PAH, and the expression was observed exclusively in the liver and predominately around pericentral areas of the hepatic lobule, while there was no transgene expression in periportal areas. CONCLUSION: This study demonstrates that MC technology offers an improved safety profile and has the potential for the genetic treatment of liver diseases.


Subject(s)
DNA, Superhelical , Genetic Therapy/methods , Genetic Vectors , Liver/enzymology , Phenylketonurias/therapy , Animals , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Phenylalanine/blood , Phenylalanine Hydroxylase/metabolism , Promoter Regions, Genetic
11.
J Inherit Metab Dis ; 37(5): 735-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24487571

ABSTRACT

Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.


Subject(s)
Brain Chemistry/drug effects , Cyclohexanones/therapeutic use , Dopamine/deficiency , Enzyme Inhibitors/therapeutic use , Nitrobenzoates/therapeutic use , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Tyrosine/metabolism , Amino Acids/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurotransmitter Agents/deficiency , Phenylketonurias/genetics
12.
Mol Genet Metab ; 105(1): 110-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22030098

ABSTRACT

BACKGROUND: The use of long-chain fatty acids (LCFAs) for energy is inhibited in inherited disorders of long-chain fatty acid oxidation (FAO). Increased energy demands during exercise can lead to cardiomyopathy and rhabdomyolysis. Medium-chain triglycerides (MCTs) bypass the block in long-chain FAO and may provide an alternative energy substrate to exercising muscle. OBJECTIVES: To determine the influence of isocaloric MCT versus carbohydrate (CHO) supplementation prior to exercise on substrate oxidation and cardiac workload in participants with carnitine palmitoyltransferase 2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl CoA dehydrogenase (LCHAD) deficiencies. DESIGN: Eleven subjects completed two 45-minute, moderate intensity, treadmill exercise studies in a randomized crossover design. An isocaloric oral dose of CHO or MCT-oil was administered prior to exercise; hemodynamic and metabolic indices were assessed during exertion. RESULTS: When exercise was pretreated with MCT, respiratory exchange ratio (RER), steady state heart rate and generation of glycolytic intermediates significantly decreased while circulating ketone bodies significantly increased. CONCLUSIONS: MCT supplementation prior to exercise increases the oxidation of medium chain fats, decreases the oxidation of glucose and acutely lowers cardiac workload during exercise for the same amount of work performed when compared with CHO pre-supplementation. We propose that MCT may expand the usable energy supply, particularly in the form of ketone bodies, and improve the oxidative capacity of the heart in this population.


Subject(s)
Exercise/physiology , Fatty Acids/metabolism , Heart Function Tests , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/physiopathology , Acetylcarnitine/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/blood , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Adolescent , Adult , Child , Creatine Kinase/metabolism , Demography , Fatty Acids/blood , Female , Glycolysis , Heart Rate , Humans , Ketones/blood , Lactic Acid/blood , Lipid Metabolism, Inborn Errors/blood , Male , Oxidation-Reduction , Oxygen Consumption , Pyruvic Acid/blood , Respiration , Substrate Specificity , Young Adult
13.
Mol Genet Metab ; 104 Suppl: S19-25, 2011.
Article in English | MEDLINE | ID: mdl-21967857

ABSTRACT

Dietary management for phenylketonuria was established over half a century ago, and has rendered an immense success in the prevention of the severe mental retardation associated with the accumulation of phenylalanine. However, the strict low-phenylalanine diet has several shortcomings, not the least of which is the burden it imposes on the patients and their families consequently frequent dietary non-compliance. Imperfect neurological outcome of patients in comparison to non-PKU individuals and nutritional deficiencies associated to the PKU diet are other important reasons to seek alternative therapies. In the last decade there has been an impressive effort in the investigation of other ways to treat PKU that might improve the outcome and quality of life of these patients. These studies have lead to the commercialization of sapropterin dihydrochloride, but there are still many questions regarding which patients to challenge with sapropterin what is the best challenge protocol and what could be the implications of this treatment in the long-term. Current human trials of PEGylated phenylalanine ammonia lyase are underway, which might render an alternative to diet for those patients non-responsive to sapropterin dihydrochloride. Preclinical investigation of gene and cell therapies for PKU is ongoing. In this manuscript, we will review the current knowledge on novel pharmacologic approaches to the treatment of phenylketonuria.


Subject(s)
Health Knowledge, Attitudes, Practice , Phenylketonurias/therapy , Biopterins/analogs & derivatives , Biopterins/therapeutic use , Genetic Therapy , Humans , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Phenylketonurias/genetics
14.
Mol Genet Metab ; 89(1-2): 58-63, 2006.
Article in English | MEDLINE | ID: mdl-16876451

ABSTRACT

Exercise induced rhabdomyolysis is a complication of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (TFP) deficiency that frequently leads to exercise avoidance. Dietary therapy for most subjects includes medium-chain triglyceride (MCT) supplementation but analysis of diet records indicates that the majority of patients consume oral MCT only with breakfast and at bedtime. We hypothesized that MCT immediately prior to exercise would provide an alternative fuel source during that bout of exercise and improve exercise tolerance in children with LCHAD deficiency. Nine subjects completed two 45 min moderate intensity (60-70% predicted maximum heart rate (HR)) treadmill exercise tests. Subjects were given 4 oz of orange juice alone or orange juice and 0.5 g MCT per kg lean body mass, 20 min prior to exercise in a randomized cross-over design. ECG and respiratory gas exchange including respiratory quotient (RQ) were monitored. Blood levels of acylcarnitines, creatine kinase, lactate, and beta-hydroxybutyrate were measured prior to and immediately after exercise, and again following 20 min rest. Creatine kinase and lactate levels did not change with exercise. There was no significant difference in RQ between the two exercise tests but there was a decrease in steady-state HR following MCT supplementation. Cumulative long-chain 3-hydroxyacylcarnitines were 30% lower and beta-hydroxybutyrate was three-fold higher after the MCT-pretreated exercise test compared to the test with orange juice alone. Coordinating MCT supplementation with periods of increased activity may improve the metabolic control of children with LCHAD and TFP deficiency following exercise.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/deficiency , Exercise , Multienzyme Complexes/deficiency , Rhabdomyolysis/enzymology , Triglycerides/metabolism , 3-Hydroxybutyric Acid/blood , Adolescent , Carnitine/analogs & derivatives , Carnitine/blood , Child , Creatine Kinase/blood , Female , Humans , Lactic Acid/blood , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase , Male , Mitochondrial Trifunctional Protein , Triglycerides/administration & dosage
15.
Mol Genet Metab ; 86(1-2): 124-33, 2005.
Article in English | MEDLINE | ID: mdl-16040264

ABSTRACT

The objective of this prospective cohort study was to determine if dietary therapy including docosahexaenoic acid (DHA; C22:6omega-3) supplementation prevents the progression of the severe chorioretinopathy that develops in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Physical, biochemical, and ophthalmological evaluations, including electroretinogram (ERG) and visual acuity by evoked potential (VEP), were performed at baseline and annually following the initiation of 65-130 mg/day DHA supplementation and continued treatment with a low-fat diet. Fourteen children with LCHAD or TFP deficiency, 1-12 years of age at enrollment, were followed for 2-5 years. Three subjects with TFP beta-subunit mutations had normal appearance of the posterior pole of the ocular fundi at enrollment and no changes over the course of the study. Eleven subjects who were homozygote and heterozygote for the common mutation, c.1528G>C, had no change to severe progression of atrophy of the choroid and retina with time. Of these, four subjects had marked to severe chorioretinopathy associated with high levels of plasma hydroxyacylcarnitines and decreased color, night and/or central vision during the study. The plasma level of long-chain 3-hydroxyacylcarnitines, metabolites that accumulate as a result of LCHAD and TFP deficiency, was found to be negatively correlated with maximum ERG amplitude (Rmax) (p=0.0038, R2=0.62). In addition, subjects with sustained low plasma long-chain 3-hydroxyacylcarnitines maintained higher ERG amplitudes with time compared to subjects with chronically high 3-hydroxyacylcarnitines. Visual acuity, as determined with the VEP, appeared to increase with time on DHA supplementation (p=0.051) and there was a trend for a positive correlation with plasma DHA concentrations (p=0.075, R2=0.31). Thus, optimal dietary therapy as indicated by low plasma 3-hydroxyacylcarnitine and high plasma DHA concentrations was associated with retention of retinal function and visual acuity in children with LCHAD or TFP deficiency.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/deficiency , Deficiency Diseases/diet therapy , Deficiency Diseases/physiopathology , Choroid Diseases/diet therapy , Choroid Diseases/physiopathology , Electroretinography , Evoked Potentials, Visual , Fatty Acids/blood , Humans , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase , Retinal Diseases/diet therapy , Retinal Diseases/physiopathology , Treatment Outcome
16.
Mol Genet Metab ; 79(2): 114-23, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12809642

ABSTRACT

Current dietary therapy for long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency consists of fasting avoidance, and limiting long-chain fatty acid (LCFA) intake. This study reports the relationship of dietary intake and metabolic control as measured by plasma acylcarnitine and organic acid profiles in 10 children with LCHAD or TFP deficiency followed for 1 year. Subjects consumed an average of 11% of caloric intake as dietary LCFA, 11% as MCT, 12% as protein, and 66% as carbohydrate. Plasma levels of hydroxypalmitoleic acid, hydroxyoleic, and hydroxylinoleic carnitine esters positively correlated with total LCFA intake and negatively correlated with MCT intake suggesting that as dietary intake of LCFA decreases and MCT intake increases, there is a corresponding decrease in plasma hydroxyacylcarnitines. There was no correlation between plasma acylcarnitines and level of carnitine supplementation. Dietary intake of fat-soluble vitamins E and K was deficient. Dietary intake and plasma levels of essential fatty acids, linoleic and linolenic acid, were deficient. On this dietary regimen, the majority of subjects were healthy with no episodes of metabolic decompensation. Our data suggest that an LCHAD or TFP-deficient patient should adhere to a diet providing age-appropriate protein and limited LCFA intake (10% of total energy) while providing 10-20% of energy as MCT and a daily multi-vitamin and mineral (MVM) supplement that includes all of the fat-soluble vitamins. The diet should be supplemented with vegetable oils as part of the 10% total LCFA intake to provide essential fatty acids.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/deficiency , Carnitine/analogs & derivatives , Lipid Metabolism, Inborn Errors/diet therapy , Lipid Metabolism, Inborn Errors/metabolism , Carnitine/blood , Child , Child, Preschool , Diet Therapy/methods , Energy Intake , Fatty Acids/blood , Female , Humans , Infant , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase , Male , Minerals/pharmacokinetics , Multienzyme Complexes/deficiency , Treatment Outcome , Vitamins/pharmacokinetics
17.
Free Radic Biol Med ; 34(11): 1482-7, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12757858

ABSTRACT

gamma-glutamyl transpeptidase (gamma-GT) deficiency in GGT(enu1) mice is associated with glutathionemia, glutathionuria, growth retardation, infertility, lethargy, cataracts, and shortened life span. Total liver glutathione (GSH) content is significantly reduced in gamma-GT-deficient mice due to chronic excessive GSH loss. Oral supplementation of GGT(enu1) mice with L-2-oxothiazolidine-4-carboxylate (OTZ), a cysteine prodrug, led to partial restoration of liver GSH content. The growth, physical appearance, and behavior of gamma-GT-deficient mice were substantially improved following OTZ supplementation. Tissue GSH deficiency is the proximate cause of the phenotypic abnormalities associated with murine gamma-GT deficiency.


Subject(s)
Glutathione/metabolism , Growth Disorders/enzymology , Liver/drug effects , Thiazoles/pharmacology , gamma-Glutamyltransferase/deficiency , gamma-Glutamyltransferase/metabolism , Animals , Body Weight/drug effects , Dietary Supplements , Genotype , Liver/enzymology , Mice , Mice, Knockout , Pyrrolidonecarboxylic Acid , Reproduction/drug effects , Thiazolidines
18.
J Child Neurol ; 17(6): 453-6, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12174969

ABSTRACT

A 13-year-old boy with clinical and electrophysiologic findings of Friedreich's ataxia developed unusually prominent myopathy. Skeletal muscle biopsy showed mitochondrial proliferation and structural abnormalities. No mutation was found in skeletal muscle mitochondrial DNA to explain this finding. Molecular genetic and pathologic studies confirmed a diagnosis of Friedreich's ataxia in the proband and affected relatives. Although the Friedreich's ataxia phenotype results from decreased expression of a mitochondrially targeted protein, frataxin, mitochondrial myopathy has not been described as a feature of the disease. The association between the frataxin gene mutation and mitochondrial myopathy in this case suggests that severe or cumulative insults to mitochondrial function may produce myopathic changes in some cases of Friedreich's ataxia. The patient also responded clinically to carnitine supplementation, suggesting a potential palliative therapy for the disease.


Subject(s)
Friedreich Ataxia/complications , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Mitochondria, Muscle/pathology , Mitochondrial Myopathies/genetics , Muscle, Skeletal/pathology , Adolescent , Autopsy , Biopsy , Carnitine/therapeutic use , DNA, Mitochondrial/analysis , Disease Progression , Friedreich Ataxia/drug therapy , Friedreich Ataxia/pathology , Humans , Iron-Binding Proteins/metabolism , Male , Microscopy, Electron , Mitochondria, Muscle/genetics , Mutation , Pedigree , Phenotype , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL