ABSTRACT
The biomacropolymers of bone extracellular matrix (ECM) guide the growth of hydroxyapatite (HA) with various ionic substitutions. Pectin, a plant polysaccharide with chemical similarities to ECM, was investigated for its potential to promote the crystallization of strontium-substituted HA (SH). The influence of pectin (0.5 and 1.0 wt%) on the in situ mineralization of SH (10 and 30 mol% calcium substitution with strontium) was studied. The preferential affinity of pectin to strontium over calcium favoured the incorporation of strontium in apatite, decreased crystal size (18.85-26.22 nm) and retained more pectin residues (8-16%). The residual pectin strongly interacted with small SH particles, resulting in high microhardness (0.43-0.85 GPa) and high surface charge (-32.1 to -30.3 mV), while weak interaction with large HA particles resulted in low microhardness (0.15-0.25 GPa) and low surface charge (-35.4 to -34.6 mV). The in vitro cellular study using human osteoblast-like MG-63 cells demonstrated that inorganic size and material crystallinity play a vital role in regulating osteogenesis. The study suggests that the synchronization of low pectin concentration (0.5 wt%) and high strontium substitution in HA (30 mol%) offers the desired microhardness and in vitro osteogenic properties to emulate natural bone.