Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biol Trace Elem Res ; 201(1): 272-281, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35083709

ABSTRACT

Zinc nanoparticles (Zn-NPs) have garnered a great deal of attention as potential cancer therapy. The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach. This study was designed to assess biosynthesized Zn-NPs as therapeutic agent against kidney cancer induced by ferric-nitrilotriacetate (Fe-NTA) in rats.Zn-NPs were synthesized from edible mushroom then characterized by transmission electron microscopy analysis, dynamic light scattering, and Fourier transform infrared spectroscopy. Rats were divided into 4 different groups: group I (control), group II (Fe-NTA group), group III (Zn-NPs group), and group IV (Fe-NTA + Zn-NPs group). Animals were sacrificed then kidney and liver function tests, MDA level, glutathione, glutathione peroxidase, and superoxide dismutase activities were measured by using colorimetric methods. Caspase-3 level and carcinoembryonic antigen concentration were measured by using ELISA. Finally, DNA fragmentation was visualized by using agarose gel electrophoresis.Treatment with Zn-NPs significantly suppressed renal oxidative stress by restoring glutathione level, glutathione peroxidase, and superoxide dismutase activities and ameliorated oxidative damage parameters of lipid peroxidation as well as renal toxicity markers. Molecular and tumor markers showed significant improvement with respect to induction group, and this was well appreciated with the histopathological alteration findings in the treated groups.Microbial synthesized Zn-NPs possess antitumor-promoting activity against Fe-NTA-induced toxicity and carcinogenesis, which should be evaluated in a clinical study.


Subject(s)
Kidney Neoplasms , Metal Nanoparticles , Rats , Animals , Zinc/adverse effects , Rats, Wistar , Ferric Compounds , Oxidative Stress , Nitrilotriacetic Acid/adverse effects , Glutathione/metabolism , Lipid Peroxidation , Glutathione Peroxidase/metabolism , Superoxide Dismutase
2.
Drug Chem Toxicol ; 46(3): 482-490, 2023 May.
Article in English | MEDLINE | ID: mdl-35361025

ABSTRACT

N-acetyl cysteine (NAC) is a nutritional supplement and greatly applied as an antioxidant in vivo and in vitro. Therefore, this study aimed to assess the metabolic and antioxidant protective effect of NAC against selenium (Se) toxicity and gamma irradiation in rats by measuring biochemical and molecular parameters. This study was conducted on sixty rats divided into six equal different groups; control, NAC, Rad, Se, Rad + NAC, and Se + NAC groups. Oxidative/nitrosative makers (LPO, NO, and NOS), antioxidants status markers (GSH, GPx, and SOD), liver metabolic markers (LDH, SDH, and ATP), and plasma metabolic markers (Glucose, total cholesterol, and total proteins) were measured using commercial colorimetric kits while plasma corticosterone concentration was measured using commercial ELISA kit. Also, Levels of NR3C1 and Glut-2 genes expression using reverse transcription-quantitative polymerase chain reaction were done. Our results revealed that Se toxicity and gamma irradiation induced significant increases in oxidative/nitrosative stress markers and a significant decrease in antioxidant status markers in the liver and adrenal tissues. Moreover, metabolic disorders were recorded as manifested by elevation of plasma ALT, Albumin, glucose and cholesterol, and decrease in protein levels associated with a significant increase in corticosterone concentration. This was also accompanied by a significant decrease in SDH activity and ATP production in the hepatic tissue. Molecular analysis showed a marked increase in NR3C1 mRNA and decrease in Glut-2 mRNA in liver tissue. However, NAC supplementation attenuated the changes induced by these toxins. Finally, we could conclude that, oral supplementation of NAC can modulate the metabolic disturbances and has protective effects in rats exposed to Se toxicity and gamma irradiation.


Subject(s)
Acetylcysteine , Antioxidants , Gamma Rays , Liver , Selenium , Animals , Rats , Acetylcysteine/metabolism , Acetylcysteine/pharmacology , Adenosine Triphosphate/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Corticosterone/metabolism , Corticosterone/pharmacology , Liver/drug effects , Liver/metabolism , Liver/radiation effects , Oxidative Stress , Selenium/toxicity , Gamma Rays/adverse effects , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adrenal Glands/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL