Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Cancer Res ; 76(21): 6331-6339, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27543601

ABSTRACT

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated. Cancer Res; 76(21); 6331-9. ©2016 AACR.


Subject(s)
Aminobenzoates/therapeutic use , Antibodies, Monoclonal/therapeutic use , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Oligopeptides/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/analysis , Animals , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Receptor, Fibroblast Growth Factor, Type 2/immunology , Xenograft Model Antitumor Assays
2.
Expert Opin Ther Targets ; 6(6): 637-47, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12472377

ABSTRACT

Protein tyrosine phosphatases (PTPs) control signal transduction pathways and have recently emerged as potential drug targets. Inhibition of individual PTPs can result in the activation of therapeutically relevant kinase cascades. This is particularly useful in cases where disease is associated with hormonal resistance, such as insensitivity to insulin or leptin. Currently, PTP1B is being investigated by a number of companies as a promising target for leptin/insulin mimetics and in the treatment of diabetes and obesity. Since all 90-100 PTPs have been identified in the human genome, the challenge now is to identify the function of these enzymes and the therapeutic indications that may exist for specific PTP inhibitors.


Subject(s)
Protein Tyrosine Phosphatases/antagonists & inhibitors , Capillary Permeability/physiology , Cyclin-Dependent Kinases/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/enzymology , Drug Design , Drug Evaluation, Preclinical , Genes, Tumor Suppressor , Humans , Immune System/enzymology , Infections/drug therapy , Infections/enzymology , Insulin/physiology , Leptin/physiology , Multigene Family , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Neoplasms/drug therapy , Neoplasms/enzymology , Obesity/drug therapy , Obesity/enzymology , Osteoporosis/drug therapy , Osteoporosis/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/classification , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/physiology , Receptors, Antigen/physiology , Signal Transduction/drug effects , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL