Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 37(3): 834-847, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36349468

ABSTRACT

Advanced glycation end products (AGEs) have been identified to transduce fibrogenic signals via inducing the activation of their receptor (RAGE)-mediated pathway. Recently, disrupting AGE-RAGE interaction has become a promising therapeutic strategy for chronic heart failure (CHF). Endothelial-to-mesenchymal transition (EndMT) is close to the cardiac fibrosis pathological process. Our previous studies have demonstrated that knockout RAGE suppressed the autophagy-mediated EndMT, and thus alleviated cardiac fibrosis. Plantamajoside (PMS) is the major bioactive compound of Plantago Asiatica, and its activity of anti-fibrosis has been documented in many reports. However, its effect on CHF and the underlying mechanism remains elusive. Thus, we tried to elucidate the protective role of PMS in CHF from the viewpoint of the AGEs/RAGE/autophagy/EndMT axis. Herein, PMS was found to attenuate cardiac fibrosis and dysfunction, suppress EndMT, reduce autophagy levels and serum levels of AGEs, yet did not affect the expression of RAGE in CHF mice. Mechanically, PMS possibly binds to the V-domain of RAGE, which is similar to the interaction between AGEs and RAGE. Importantly, this competitive binding disturbed AGEs-induced the RAGE-autophagy-EndMT pathway in vitro. Collectively, our results indicated that PMS might exert an anti-cardiac fibrosis effect by specifically binding RAGE to suppress the AGEs-activated RAGE/autophagy/EndMT pathway.


Subject(s)
Catechols , Glycation End Products, Advanced , Animals , Mice , Autophagy , Catechols/pharmacology , Fibrosis , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products , Epithelial-Mesenchymal Transition
2.
Front Cell Infect Microbiol ; 12: 969526, 2022.
Article in English | MEDLINE | ID: mdl-36051242

ABSTRACT

The gut dysbiosis has emerged as a prominent player in the pathogenesis and development of colorectal cancer (CRC), which in turn intensifies dysregulated gut microbiota composition and inflammation. Since most drugs are given orally, this dysbiosis directly and indirectly impinges the absorption and metabolism of drugs in the gastrointestinal tract, and subsequently affects the clinical outcome of patients with CRC. Herbal medicine, including the natural bioactive products, have been used traditionally for centuries and can be considered as novel medicinal sources for anticancer drug discovery. Due to their various structures and pharmacological effects, natural products have been found to improve microbiota composition, repair intestinal barrier and reduce inflammation in human and animal models of CRC. This review summarizes the chemo-preventive effects of extracts and/or compounds derived from natural herbs as the promising antineoplastic agents against CRC, and will provide innovative strategies to counteract dysregulated microbiota and improve the lives of CRC patients.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Dysbiosis/prevention & control , Herbal Medicine , Humans , Inflammation
3.
Int Immunopharmacol ; 104: 108510, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34999393

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in young children, but there are few safe and effective treatments for this disease. Platycodonis Radix is widely used as an antitussive and expectorant drug for preventing various diseases in lower respiratory tract, in which the polysaccharides are one of the main bioactivity constituents. In this study, the protective effects of the P. Radix polysaccharides (PRP) against RSV-induced bronchiolitis in juvenile mice and RSV-induced apoptosis of epithelial HEp-2 cells were investigated. The results showed that PRP obviously decreased the levels of IL-1ß, IL-4, IL-6, TNF-α, IFN-γ and TSLP in lung tissues, and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) of RSV-infected mice. Furthermore, it reduced the apoptosis of RSV-infected HEp-2 cells and remarkably inhibited the mRNA expressions of RSV L gene, which indicated that PRP affected transcription and replication of RSV in host cells. Compared with that in RSV-infected group, miR-181a-5p in the PRP-treated group presented the highest relative abundance and its expression was violently reduced by approximately 30%. Mechanistically, PRP had the similar effects as miR-181a-5p antagomir on RSV-induced apoptosis and inflammation in HEp-2 cells via upregulating BCL2, MLL3 and SIRT1, which could be reversed by miR-181a-5p mimic. Therefore, it demonstrated that PRP not only protected against RSV-induced lung inflammation in mice but also inhibited apoptosis of RSV-infected HEp-2 cells via suppressing miR-181a-5p and transcriptionally activating Hippo and SIRT1 pathways.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Plant Extracts , Platycodon , Polysaccharides/therapeutic use , Respiratory Hypersensitivity/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Hippo Signaling Pathway/drug effects , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice, Inbred BALB C , MicroRNAs , Polysaccharides/pharmacology , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL