Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Ethnopharmacol ; 323: 117615, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38163560

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Essential hypertension (EH) is one of the important risk factors of cardio-cerebrovascular diseases, and it can significantly increase the incidence and mortality of acute myocardial infarction, cerebral infarction and hemorrhage. Danhong Formula (DHF) was consisting of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese) (Plant names have been checked with http://www.the plant list.org on June 28th, 2023) was approved by State Food and Drug Administration of China, that has been used for thousands of years in the treatment of cardiovascular diseases in China with proven safety and efficacy. Though our previous studies have found that DHF improved endothelial dysfunction (ED) and decreased high blood pressure (BP), the underlying mechanisms of its antihypertensive effect still remain unclear. AIM OF THE STUDY: This study investigated whether DHF regulated MicroRNA 24- Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase (miR-24 - PI3K/AKT/eNOS) axis to produce antihypertensive effect and improve endothelial dysfunction. MATERIALS AND METHODS: Firstly, the chemical components of DHF were analyzed by UHPLC-MS. After that, BP was continuously monitored within the 1st, 3rd, and 4th week in SHR to evaluate the antihypertensive effect of DHF intraperitoneal injection. In addition, not only the contents of serum nitric oxide (NO), prostacyclin (PGI2), and angiotensin II (Ang II) were detected, but also the isolated aorta ring experiment was conducted to evaluate the vasomotoricity to evaluate of DHF on improving endothelial dysfunction. Key proteins or mRNA expression associated with miR-24 - PI3K/AKT/eNOS axis in aorta were detected by capillary Western blot, immunohistochemistry or RT-PCR to explore the underlying mechanisms. Index of NO, Ang II PGI2 and key proteins or mRNA expression were also conducted in miR-24-3p over-expression HUVECs model. RESULTS: Compared with SHR control group, DHF (4 mL/kg/day, 2 mL/kg/day, 1 mL/kg/day) treatment significantly reduced high BP in SHR and selectively increased acetylcholine (Ach) induced vasodilation, but not sodium nitroprusside (SNP) in a manner of concentration dependency in isolated aorta ring. DHF (4 mL/kg/day, 1 mL/kg/day) treatment was accompanying an increment of NO and PGI2, and lowering AngII in SHR. Moreover, DHF treatment significantly up-regulated expression of p-PI3K, p-AKT, mTOR, eNOS and p-eNOS, but down-regulated miR-24-3p expression in aorta. Compared with miR-24-3p over-expression HUVECs model group, DHF treatment inhibited miR- 24-3p expression and up-regulated p-PI3K, p-AKT, mTOR and eNOS mRNA expression. Similarly, DHF treatment increased PI3K, AKT, mTOR and eNOS protein expression in HUVECs by Western blot. CONCLUSIONS: These findings suggest that DHF alleviates endothelial dysfunction and reduces high BP in SHR mediated by down-regulating miR-24 via ultimately facilitating up-regulation of PI3K/AKT/eNOS axis. This current study firstly demonstrates a potential direction for antihypertensive mechanism of DHF from microRNA aspect and will promote its clinical applications.


Subject(s)
Drugs, Chinese Herbal , Hypertension , MicroRNAs , Humans , Phosphatidylinositol 3-Kinase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Blood Pressure , Proto-Oncogene Proteins c-akt/metabolism , Protein Serine-Threonine Kinases , Phosphatidylinositol 3-Kinases/metabolism , Antihypertensive Agents , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Hypertension/drug therapy , Angiotensin II/pharmacology , TOR Serine-Threonine Kinases , Serine , RNA, Messenger , Nitric Oxide/metabolism
2.
J Environ Manage ; 352: 120109, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38232586

ABSTRACT

Colloidal phosphorus (P) is an important P form in agricultural runoff and can threaten water quality. However, up to date, there are few effective approaches to mitigate colloidal P pollution. This study investigated the effect of ultraviolet (UV) irradiation on medium-colloidal (MC; 220 nm-450 nm) and fine-colloidal (FC; 3 kDa-220 nm) P in agricultural runoff. Under 24 h of UV irradiation, as the most abundant colloidal P fraction, concentration of total P (TP) in FC consistently decreased by 81.0%, while TP concentration in MC first increased by 74.4% after 3 h and then decreased with irradiation time. At the same time, particulate TP (>450 nm) concentration was found to be increased from 0 to 14.7 µM. However, there were no obvious variations in TP concentrations in FC and MC fractions under dark conditions. In FC fraction, with the decrease of TP, the corresponding concentrations of iron (Fe), aluminum (Al), silicon (Si) declined synchronously, and ferric iron/ferrous iron (Fe(III)/Fe(II)) ratio and organic matter (OM) concentration were reduced as well. These results suggested that P in FC fraction was gradually transformed into particulate P during photoreduction of Fe(III) and photodegradation of OM under UV irradiation. Our study helps to understand the mechanism of the phototransformation of colloidal P, and propose an UV irradiation-based approach to remove colloidal P in agricultural runoff.


Subject(s)
Ferric Compounds , Phosphorus , Phosphorus/analysis , Agriculture , Water Quality , Iron
3.
Int Immunopharmacol ; 128: 111570, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280336

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a non-specific gastrointestinal disease, is commonly managed with aminosalicylic acids and immunosuppressive agents to control inflammation and relieve symptoms, despite frequent relapses. Isofraxidin is a coumarin compound extracted from traditional Chinese medicine, exhibiting anti-inflammatory and antioxidant properties; however, its alleviating effect on UC remains unclear. Therefore, we investigated the mechanism of isofraxidin in lipopolysaccharide (LPS)-induced cell inflammation in human intestinal epithelial cell (HIEC) and human colorectal adenocarcinoma cells (Caco-2), as well as in dextran sulfate sodium (DSS)-induced UC in mice. METHODS: We established colitis models in HIEC and Caco-2 cells and mice with LPS and DSS, respectively. Additionally, NLRP3 knockout mice and HIEC cells transfected with NLRP3 silencing gene and ML385 illustrated the role of isofraxidin in pyroptosis and oxidative stress. Data from cells and mice analyses were subjected to one-way analysis of variance or a paired t-test. RESULTS: Isofraxidin significantly alleviated LPS-induced cell inflammation and reduced lactic dehydrogenase release. Isofraxidin also reversed DSS- or LPS-induced pyroptosis in vivo and in vitro, increasing the expression of pyroptosis-related proteins. Moreover, isofraxidin alleviated oxidative stress induced by DSS or LPS, reducing reactive oxidative species (ROS), upregulation nuclear factor erythroid 2-related factor 2 (Nrf2), and promoting its entry into the nucleus. Mechanistically, ML385 reversed the inhibitory effect of isofraxidin on ROS and increased pyroptosis. CONCLUSION: Isofraxidin can inhibit pyroptosis through upregulating Nrf2, promoting its entry into the nucleus, and reducing ROS, thereby alleviating DSS-induced UC. Our results suggest isofraxidin as a promising therapeutic strategy for UC treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Humans , Animals , Colitis, Ulcerative/drug therapy , NF-E2-Related Factor 2/metabolism , Dextran Sulfate/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Caco-2 Cells , Lipopolysaccharides/pharmacology , Pyroptosis , Disease Models, Animal , Colitis/chemically induced , Inflammation/pathology , Coumarins/pharmacology , Oxidative Stress , Mice, Inbred C57BL
4.
Sci Total Environ ; 905: 167104, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717774

ABSTRACT

Colloidal phosphorus (CP) has high mobility and great loss risk; their biogeochemical processes are influenced by agricultural management such as redox oscillation and biochar-amendment application. This study monitored CP concentration in pore-water, soil P species and P adsorption capacity, to investigate CP release from paddy soils as affected by the interactive effects of oxygen status (continuous anoxic/oxic for 12 days, CA/CO; intermittent anoxic for 2, 4, 6, 8, 10 days during the 12-day cycle, IA2-10) and management (soil only, CK; bulk/micro/nano-sized biochar with various properties: SBBulk, SBMicro, and SBNano). Compared to the control (0.25-0.84 mg L-1, CK-CA), the single intermittent anoxic treatment (CK-IA) reduced CP concentrations by 45 %, due to the rise of Eh and pH and the decline of the degree of P saturation along with the increased soil Fe/Al-P and organic-P. Longer anoxic duration under the CK-IA reduced CP release, probably donated from massive production of redox-stable amorphous Fe/Al-bound P. The single biochar treatment (SB-CA: SBBulk-CA > SBMicro-CA > SBNano-CA) decreased CP release by 37 % as compared to the CK-CA, ascribed to the increased soil pH, Eh, and P adsorption capacity. The combined treatment (SB-IA: SBBulk-IA2 > SBNano-IA10) synergistically reduced CP release by 68 % in comparison with the CK-CA, due to the increase of adsorption through interactions of soil Fe/Al/Ca- and organic-P. Therefore, nano-sized biochar and long intermittent anoxic duration are recommended for reducing CP release from paddy soils.


Subject(s)
Phosphorus , Soil Pollutants , Soil , Soil Pollutants/analysis , Charcoal
5.
Chemosphere ; 340: 139852, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595690

ABSTRACT

Developing metal-based nanocomposites as adsorbent for phosphorus (P) removal is a simple and effective strategy, while the separation of nanoscale adsorbents from water after adsorption is a tedious job. In this work, a novel Zr/Zn nanocomposite (Zr/Zn NCs) modified ceramsite (ZZMC) was synthesized to enhance P removal from agricultural drainage water. Characterization results showed that Zr/Zn NCs with fusiform nanostructures were uniformly loaded on the ceramsite, hence depending on the high mechanical strength and large size of ceramsite, the Zr/Zn NCs can be conveniently handled and separated after adsorption with P. The common issues of weak adsorption capacity and short using life related to ceramsite for P removal in wastewater were also significantly improved in complementarity combination with Zr/Zn NCs. The ZZMC exhibited higher P removal efficiency (>90%) at 5 mg-P L-1 in a wide pH range (5-9) than bulk ceramsite (<10%) and performed well when other ions were co-existed. For two real agricultural drainage water samples with total phosphorus (TP) of 0.526 mg-P L-1 and 0.865 mg-P L-1, the ZZMC demonstrated desirable adsorption performance not only for truly dissolved P (<3 kDa; >85%), but also for fine colloidal P (3 kDa-220 nm; 76.1%-79.1%) and medium colloidal P (220-450 nm; 80.7%-82.2%) within 30 adsorption cycles that included two-time regeneration treatments towards this material. Moreover, the adsorption capacity of TP by ZZMC after two regenerated treatments was more than 90% of that of fresh ZZMC. The results revealed the feasibility to remove different-sized P at low concentration for agricultural drainage water by ZZMC.


Subject(s)
Nanocomposites , Phosphorus , Water , Zinc
6.
Molecules ; 28(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446727

ABSTRACT

Lysimachia foenum-graecum Hance (Primulaceae) is a medicinal plant used for cold, pain, ascariasis, etc., in China. Triterpenoid saponins have been found to be the main components of this genus. In this work, a pair of oleanane-type triterpenoid saponins with an unprecedented 4/5/6 fused tricyclic skeleton, foegraecumoside O (1) and foegraecumoside P (2) were isolated from the butanol fraction of the aerial parts of L. foenum-graecum. Their structures were determined using chemical methods and extensive spectroscopic analyses, along with quantum chemical calculations. Compound 2 displayed moderate cytotoxicity against HepG2, MGC-803, T24, NCI-H460, A549, and A549/CDDP (drug-resistant lung-cancer cell line) with IC50 at 12.4-19.2 µM in an MTT assay, comparing with the positive control doxorubicin, which had IC50 at 0.53-4.92 µM, but was inactive for A549/CDDP. Furthermore, a possible biosynthetic pathway for forming compounds 1 and 2 was proposed.


Subject(s)
Oleanolic Acid , Saponins , Triterpenes , Molecular Structure , Lysimachia , Saponins/pharmacology , Saponins/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Triterpenes/chemistry
7.
Chemosphere ; 333: 138963, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201601

ABSTRACT

Soil water-dispersible colloidal phosphorus (WCP) presents high mobility, however, the regulatory effect of biochar-coupled organic fertilizer is rarely known, especially under different cropping patterns. This study investigated the P adsorption, soil aggregate stability, and WCP in three paddy and three vegetable fields. These soils were amended with different fertilizers (chemical fertilizer, CF; substitution of solid-sheep manure or liquid-biogas slurry organic fertilizer, SOF/LOF; substitution of biochar-coupled organic fertilizers, BSOF/BLOF). Results presented that the LOF averagely increased the WCP contents by 50.2% across the sites, but the SOF and BSOF/BLOF averagely decreased their contents by 38.5% and 50.7% in comparison with the CF. The WCP decline in the BSOF/BLOF-amended soils was mainly attributed to the intensive P adsorption capacity and soil aggregate stability. The BSOF/BLOF increased the amorphous Fe and Al contents in the fields in comparison with the CF, which improved the adsorption capacity of soil particles, further improving the maximum absorbed P (Qmax) and reducing the dissolved organic matter (DOC), leading to the improvement of > 2 mm water-stable aggregate (WSA>2mm) and subsequent WCP decrease. This was proved by the remarkable negative associations between the WCP and Qmax (R2 = 0.78, p < 0.01) and WSA>2mm (R2 = 0.74, p < 0.01). This study manifests that biochar-coupled organic fertilizer could effectively reduce soil WCP content via the improvement of P adsorption and aggregate stability.


Subject(s)
Phosphorus , Soil , Animals , Sheep , Soil/chemistry , Phosphorus/chemistry , Fertilizers , Water , Charcoal/chemistry
8.
Chemosphere ; 317: 137809, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638925

ABSTRACT

Phosphorus (P) availability and loss risk are linked to P species; however, their alternations in the soil amended with biochar-blended organic fertilizer is not well known, particularly under contrasting soil properties and land management. In this study, the variance of soil P species extracted by sequential chemical extraction (SCE) and 31P NMR techniques, as well as the degree of P saturation (DPS), were investigated throughout three paddy and three vegetable fields. These fields were amended with three different fertilizers at the same P application rate: chemical fertilizer (CF), organic fertilizer substitution (sheep manure/biogas slurry, SM/BS), and biochar-blended organic fertilizer substitution (BSM/BBS). Results showed that the BSM/BBS and SM increased the total P contents by 7.5% and 5.9% (TP) and available P contents by 30.1% and 19.2% (AP), but decreased the DPS values by 19.4% and 11.7%, compared to the CF treatment. Yet, the BS decreased the TP and AP contents but increased the DPS values across the experimental sites. In the BSM/BBS amended soils, high AP contents were due to the increased inorganic P (NaHCO3-Pi), while the increased organic P (monoester and DNA) induced low DPS values and reduced soil P loss risk. Our study highlights that biochar-blended organic fertilizer is an effective agronomic way for improving P availability and decreasing P loss risk via the alteration of soil P species.


Subject(s)
Phosphorus , Soil , Animals , Sheep , Soil/chemistry , Phosphorus/chemistry , Fertilizers , Charcoal , Manure
9.
Environ Res ; 220: 115222, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36610537

ABSTRACT

Soil colloids have been shown to play a critical role in soil phosphorus (P) mobility and transport. However, identifying the potential mechanisms behind colloidal P (Pcoll) release and the key influencing factors remains a blind spot. Herein, a machine learning approach (random forest (RF) coupled with partial dependence plot analyses) was applied to determine the effects of different soil physicochemical parameters on Pcoll content in three colloidal subfractions (i.e., nano- (NC): 1-20 nm, fine- (FC): 20-220 nm and medium-sized colloids (MC): 220-450 nm) based on a regional dataset of 12 farmlands in Zhejiang Province, China. RF successfully predicted Pcoll content (R2 = 0.98). Results showed that colloidal- organic carbon (OCcoll) and minerals were the major determinants of total Pcoll content (1-450 nm); their critical values for increasing Pcoll release were 87.0 mg L-1 for OCcoll, 11.0 mg L-1 for iron (Fecoll) or aluminium (Alcoll), 2.6 mg L-1 for calcium (Cacoll), 9.0 mg L-1 for magnesium (Mgcoll), 2.5 mg L-1 for silicon (Sicoll), and 1.4 mg L-1 for manganese (Mncoll). Among three colloidal subfractions, the major factors determining Pcoll were soil Olsen-P (POlsen; 125.0 mg kg-1), Cacoll (2.5 mg L-1), and colloidal P saturation (21.0%) in NC; Mncoll (1.5 mg L-1), Mgcoll (6.8 mg L-1), and POlsen (135.0 mg kg-1) in FC; while Mncoll (1.5 mg L-1), Alcoll (2.5 mg L-1), and Fecoll (3.8 mg L-1) in MC, respectively. OCcoll had a considerable effect in the three fractions, with critical values of 80.0 mg L-1 in NC or FC, and 50.0 mg L-1 in MC. Our study concluded that the information gleaned using the RF model can be used as crucial evidence to identify the key determinants of different size fractionated Pcoll contents. However, we still need to discover one or more easy-to-measure parameters that can help us better predict Pcoll.


Subject(s)
Phosphorus , Soil , Soil/chemistry , Phosphorus/analysis , Agriculture , Minerals , Colloids
10.
Environ Sci Pollut Res Int ; 30(13): 38592-38604, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585585

ABSTRACT

Combined application of biochar and organic fertilizer improves soil structure and crop yield but may lead to increased loss of phosphorus (P). To reduce the P loss risk in this case, rice straw biochar (BC) and sheep manure (SM) were modified using polyacrylamide (PAM). The effects of using organic amendments (BC, SM, and PAM-modified organic mixtures) and no amendments (CK) on soil total and colloidal P leaching loss from paddy soils were evaluated through soil column leaching experiments. The soil leachate volume was increased by 8.91% with BC treatment and reduced by 15.3% with SM treatment. The total P leaching loss (973.9 µg kg-1) from the BC-treated soil was higher than that from other treatments (541.4-963.5 µg kg-1). However, there was much more colloidal P loss (480.0 µg kg-1) from SM treatment. The optimal conditions for the preparation of BC and SM modified using polyacrylamide (PSB) for reducing P leaching loss were SM/BC = 4:1, 1% PAM, and 100 °C. Molybdate-unreactive P accounts for 58.61-86.89% of the colloidal P in the soil leachate with organic amendments. PSB reduced colloidal P loss (particularly in 10-220 nm range) by ~ 50% compared with BC and SM treatments. The colloidal P concentration in the leaching solutions was significantly correlated with TOC and susceptible to Fe and Al concentrations. Using PAM-modified mixture instead of manure and biochar as a soil amendment can effectively control P leaching from fields.


Subject(s)
Manure , Soil , Animals , Sheep , Soil/chemistry , Phosphorus , Charcoal/chemistry
11.
Biomed Pharmacother ; 153: 113453, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076567

ABSTRACT

Atrial fibrillation significantly increases the risk of thromboembolism and stroke. Wenxin Keli (WXKL) is a widely used Chinese patent medicine against arrhythmia but if it has antithrombotic activity is unknown. Since platelet activation is a critical factor in thrombosis and the key target for many antithrombotic drugs, this study aims to demonstrate the antithrombotic efficacy of WXKL. In vitro platelet activation experiments showed that WXKL significantly inhibited platelet adhesion and aggregation. The potential active monomers in WXKL were screened by in silico prediction and in vitro platelet aggregation/adhesion assays. From WXKL chemical fractions and more than 40 monomers, linoleic acid (LA) was identified as the strongest antiplatelet compound. Oral administration of WXKL (1.2 g/kg/day) and LA (50 mg/kg/day) for 7 days significantly improved FeCl3-induced carotid thrombus formation in ICR mice without prolonging bleeding time. Flow cytometry showed that both WXKL and LA inhibited the release of p-selectin after platelet activation. ELISA showed that WXKL and LA also inhibited the expression of 6-Keto-PGF1α in plasma of mice with thrombus, but had no obvious effect on the expression of TXB2. WXKL inhibited platelet activation by broadly inhibiting the phosphorylation of protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and phospholipase C (PLC) ß3. In contrast, LA only inhibited the phosphorylation of PLCß3. In conclusion, WXKL and its active component LA showed good antiplatelet and antithrombotic efficacy in vivo and in vitro. Mechanistically, the multicomponent Chinese medicine WXKL acts on multiple targets in the platelet activation pathway whereas its active monomer linoleic acid acts specifically on phospholipase C ß3.


Subject(s)
Atrial Fibrillation , Linoleic Acid , Platelet Activation , Thrombosis , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibrinolytic Agents/pharmacology , Linoleic Acid/pharmacology , Linoleic Acid/therapeutic use , Mice , Mice, Inbred ICR , P-Selectin/drug effects , P-Selectin/metabolism , Platelet Activation/drug effects , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Thrombosis/drug therapy
12.
Biomed Pharmacother ; 153: 113325, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35772377

ABSTRACT

BACKGROUND: Promotion of functional recovery in patients is the primary goal of stroke management. However, its achievement is low due to the lack of full understanding of the complex pathological process of stroke and therefore limited therapeutic strategies. Qishen Yiqi Dropping Pill (QSYQ) is a component-based Chinese medicine that has been widely used in clinical treatment of ischemic cardiovascular diseases. Our previous studies indicated that QSYQ were protective for acute ischemic stroke in animal models and this study aimed to investigate the effect of QSYQ on brain function during stroke recovery. METHODS: The therapeutic effects of QSYQ were evaluated by neurological deficit score, dark avoidance test, gait analysis, Morris water maze and brain tissue atrophy volume in a rat model of middle cerebral artery occlusion (MCAO) with ischemia for 60 min. The underlying mechanisms of QSYQ accelerating the functional recovery of MCAO rats was then revealed using proteomic sequencing and validated by immunohistochemistry, qRT-PCR and ELISA assays. The active components in QSYQ were elucidated by molecular docking and verified biochemically in vitro. RESULTS: QSYQ treatment for 28 days significantly improved the neurological function, gait, spontaneous activity, spatial memory, and reduced brain atrophy in MCAO rats. Proteomic analysis of ischemic brain region and the following bioinformatics studies showed that QSYQ intervention markedly modulated neuroinflammatory responses post stroke, in which ICAM-1 played a dominant role. In particular, QSYQ reversed high cerebral expression of ICAM-1 in MCAO rats and decreased the content of TNF-α, IL-6 and IL1ß in brain tissue and serum. In vitro, it was found that the active component rosmarinic acid in QSYQ evidently inhibit the expression of ICAM-1 caused by oxygen glucose deprivation/reoxygenation injury via using immunofluorescence staining. CONCLUSION: QSYQ effectively accelerates the recovery of motor impairment and memory loss in rats after stroke via downregulation of ICAM-1-mediated neuroinflammation, and rosmarinic acid is one of its main active components.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Atrophy , Brain Ischemia/drug therapy , Drugs, Chinese Herbal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Intercellular Adhesion Molecule-1 , Memory Disorders/drug therapy , Molecular Docking Simulation , Neuroinflammatory Diseases , Proteomics , Rats , Stroke/complications , Stroke/drug therapy
13.
J Ethnopharmacol ; 293: 115301, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35436536

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is one of the leading causes of mortality and long-term disability worldwide. Currently, approved therapies of intravenous thrombolysis and mechanical thrombectomy are limited only to selected patients with rescuable brain tissue. Chinese medicine that benefits Qi (Yiqi, YQ) and activates blood (Huoxue, HX) is widely used in the clinic for treating stroke, but their mechanisms are not well understood yet. We have previously reported that QishenYiqi (QSYQ) formula exerts cerebral protective effect and promotes post-stroke recovery. AIM OF THE STUDY: This study aimed to explore the chemical basis and molecular mechanism of anti-stroke therapy of QSYQ and its YQ and HX components further. MATERIALS AND METHODS: Serum pharmacochemistry was performed to identify the bioactive constituents in QSYQ for cerebral protection. The survival rate, mNSS test, open field test, gait analysis, cerebral infarction volume, and blood-brain barrier (BBB) integrity were determined to uncover the synergistic and differential contributions of YQ and HX components in a cerebral ischemia/reperfusion injury (CI/RI) model. Bioinformatic mining of QSYQ proteomics data and experimental validation were executed to access the functional mechanism of YQ and HX components. RESULTS: Eleven prototype ingredients and six metabolites were successfully identified or tentatively characterized in rat plasma. Therapeutically, YQ and HX components of QSYQ synergistically boosted the survival rate, improved neurological and motor functions, alleviated cerebral infarction as well as protected BBB integrity in CI/RI model in rats. Individually, YQ component contributed more to ameliorating locomotive ability than that of HX component. Mechanistically, HX component played a more prominent role in the modulation of galectin-3 mediated inflammation whereas YQ component regulated lysosomal-autophagy signaling. CONCLUSIONS: This study identifies major prototype ingredients and metabolites of QSYQ in plasma which may contribute to its cerebral protection. YQ and HX components of QSYQ differentially and synergistically protect the brain from CI/RI by regulating galectin-3-mediated inflammation and lysosomal-autophagy signaling. These findings demonstrate that a maximal stroke protection by a component-based Chinese medicine could be attributed to the combination of its individual components via different mechanisms. It may shed new light on our understanding of the TCM principle of tonifying Qi and activating blood, particularly in a setting of ischemic stroke.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Ischemic Stroke , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Cerebral Infarction/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Galectin 3/therapeutic use , Humans , Inflammation/drug therapy , Ischemic Stroke/drug therapy , Lysosomes , Rats , Reperfusion Injury/drug therapy
14.
Biomed Pharmacother ; 148: 112675, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183993

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after Allogeneic Hematopoietic Stem Cell Transplant (allo-HSCT). Although a series of immunosuppressant agents are routinely used as the first-line prevention, the morbidity and mortality rate remains high in allo-HSCT recipients. Our previous work indicated that combining Xuebijing (XBJ) with Cyclosporin A (CSA) is superior to CSA alone in preventing aGVHD. However, it was not clear which compounds in XBJ may prevent aGVHD. Whether the effective compounds in XBJ can be safely combined with CSA to prevent GVHD remain to be evaluated. Here, we accessed whether the combination of four main components in XBJ (C0127) had the same efficacy as XBJ in preventing aGVHD. In addition, the effectiveness of a novel combination therapy (C0127 + CSA) on aGVHD prophylaxis was evaluated using 16 s rRNA sequencing and RNA sequencing approaches in vitro and in vivo. In aGVHD mice, C0127 enhanced the preventive effects of CSA including decreasing mortality, maintaining weight, reducing GVHD score and reducing the expression of IL-6 and TNF-α in serum. Fatal GVHD is a frequent consequence of intestinal tract damage. We found combining C0127 with CSA alleviated the gut damage and maintained the normal physiological function of intestine by H&E staining, intestinal permeability and short chain fatty acid (SCFA) assays. Next, 16 S sequencing analysis of feces showed the combination treatment maintained the intestinal microbial diversity, normalized the intestinal microorganism and prevented flora disorder by reducing the relative abundances of Escherichia coli and Enterococcus. Further, RNA-seq analysis of colonic epithelium revealed C0127 combined with CSA chiefly regulated chemokines and cytokines in IL-17 signaling pathway. The combination treatment reduced the expression of G-CSF and its effector STAT3 (an axis that aggravated gut inflammation and flora disorder) in gut epithelium on mRNA and protein level. These findings indicated that C0127 improved the prevention of CSA in aGVHD mice partially by protecting the gut from damage through normalizing G-CSF signaling, which regulates the intestinal microbiota and the integrity of the epithelial barrier.


Subject(s)
Drugs, Chinese Herbal , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Acute Disease , Animals , Cyclosporine/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Mice
15.
Curr Med Sci ; 41(6): 1123-1133, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950987

ABSTRACT

Chronic diseases are a growing concern worldwide, with nearly 25% of adults suffering from one or more chronic health conditions, thus placing a heavy burden on individuals, families, and healthcare systems. With the advent of the "Smart Healthcare" era, a series of cutting-edge technologies has brought new experiences to the management of chronic diseases. Among them, smart wearable technology not only helps people pursue a healthier lifestyle but also provides a continuous flow of healthcare data for disease diagnosis and treatment by actively recording physiological parameters and tracking the metabolic state. However, how to organize and analyze the data to achieve the ultimate goal of improving chronic disease management, in terms of quality of life, patient outcomes, and privacy protection, is an urgent issue that needs to be addressed. Artificial intelligence (AI) can provide intelligent suggestions by analyzing a patient's physiological data from wearable devices for the diagnosis and treatment of diseases. In addition, blockchain can improve healthcare services by authorizing decentralized data sharing, protecting the privacy of users, providing data empowerment, and ensuring the reliability of data management. Integrating AI, blockchain, and wearable technology could optimize the existing chronic disease management models, with a shift from a hospital-centered model to a patient-centered one. In this paper, we conceptually demonstrate a patient-centric technical framework based on AI, blockchain, and wearable technology and further explore the application of these integrated technologies in chronic disease management. Finally, the shortcomings of this new paradigm and future research directions are also discussed.


Subject(s)
Artificial Intelligence/trends , Blockchain/trends , Chronic Disease , Delivery of Health Care , Disease Management , Wearable Electronic Devices/trends , Humans , Inventions
16.
J Food Biochem ; 45(10): e13937, 2021 10.
Article in English | MEDLINE | ID: mdl-34532870

ABSTRACT

The effects of heat shock (HT), 1-methylcyclopropene (1-MCP), or their combination (HT + 1-MCP) on the quality of fresh jujube fruits during cold storage were studied. Among them, HT showed the best preservation effect on jujube fruits, which was more effective than others in inhibiting the increase of red index, decay incidence, and weight loss and delaying the decrease of firmness, soluble solids content (SSC), titratable acidity (TA), and ascorbic acid (AsA) content. Besides, it could delay the degradation rate of the cell wall to maintain the integrity of cell membrane, and keep the high activity of active oxygen scavenging enzymes. During cold storage, malondialdehyde (MDA) content and relative electrolyte leakage (REL) of the HT group were significantly lower than those of the control group, 1-MCP, and HT + 1-MCP group (p < .05), while superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were significantly higher than those of other groups (p < .05). It was concluded that the postharvest HT treatment could effectively delay the senescence and decay of jujube fruits. PRACTICAL APPLICATIONS: Jujube fruits have high nutritional value used for food and medicine. However, they are not tolerant to storage after harvest, resulting in high economic losses. Therefore, it is of great significance to find a suitable method to maintain the quality of jujube fruits. Our results revealed the effect of HT, 1-MCP, and their combination on the quality maintenance of jujube fruits, and found that HT could effectively maintain the quality of them, which could be used as an effective method for keeping jujube fruits fresh.


Subject(s)
Ziziphus , Catalase , Fruit , Heat-Shock Response , Nutritive Value
17.
J Ethnopharmacol ; 280: 114481, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34343651

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shuxuening injection (SXNI) is a Chinese medicine of Ginkgo biloba L. leaves extract (GBE), which is widely used clinically for cardiovascular diseases such as stroke and myocardial infarction, but the pharmacological mechanism of its therapeutic effect is not fully understood. AIM OF THE STUDY: Preclinical studies suggested that inhibition of neuronal apoptosis effectively improves brain damage after ischemic stroke. The purpose of this study was to investigate the inhibitory effect of SXNI on neuronal apoptosis in post-stroke mice and its underlying mechanism. MATERIALS AND METHODS: A mouse cerebral ischemia-reperfusion injury (CIRI) model was constructed by middle cerebral artery occlusion (MCAO) and treated with 3 mL/kg SXNI. TUNEL and immunohistochemistry experiments were performed on brain slices on the 7th day after stroke. The protein was extracted from the hippocampus region of the brain for western-blot assay. To simulate the in vivo ischemia-reperfusion process, the hippocampal neuron cell line HT-22 was subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro, and 200 µg/mL SXNI was administered. The HT-22 cells were then studied by RT-PCR and immunocytochemistry. RESULTS: In vivo, SXNI treatment significantly reduced hippocampal neuronal apoptosis. Immunohistochemistry showed that SXNI inhibited the activation of Caspase-3 protein in the hippocampus after ischemic stroke. Western blot analysis further confirmed that SXNI regulated the expression of the antagonizing protein pair Bax and Bcl-2 to exert anti-apoptotic effect in addition to reducing the expression of Cleaved-Caspase-3 in the hippocampus. In vitro, 200 µg/mL SXNI treatment significantly improved HT-22 apoptosis caused by OGD/R. Further RT-PCR and immunocytochemistry study showed that 200 µg/mL SXNI inhibited apoptosis of hippocampal neurons by regulating the mRNA and protein expressions of apoptotic molecules Bax, Bcl-2 and Caspase-3. CONCLUSIONS: CIRI can induce hippocampal neuronal apoptosis, which is inhibited by SXNI via regulating Bax/Bcl-2 and blocking Caspase-3 activation. Therefore, SXNI may be a promising treatment strategy to improve the prognosis of ischemic stroke.


Subject(s)
Apoptosis/drug effects , Brain Ischemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Animals , Caspase 3/metabolism , Cell Line , Disease Models, Animal , Hippocampus/cytology , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Reperfusion Injury/drug therapy , bcl-2-Associated X Protein/metabolism
18.
Biomed Pharmacother ; 141: 111941, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328102

ABSTRACT

BACKGROUND: Hypertension is a leading risk factor for developing kidney disease. Current single-target antihypertensive drugs are not effective for hypertensive nephropathy, in part due to its less understood mechanism of pathogenesis. We recently showed that QiShenYiQi (QSYQ), a component-based cardiovascular Chinese medicine, is also effective for ischemic stroke. Given the important role of the brain-heart-kidney axis in blood pressure control, we hypothesized that QSYQ may contribute to blood pressure regulation and kidney protection in Dahl salt-sensitive hypertensive rats. METHODS: The therapeutic effects of QSYQ on blood pressure and kidney injury in Dahl salt-sensitive rats fed with high salt for 9 weeks were evaluated by tail-cuff blood pressure monitoring, renal histopathological examination and biochemical indicators in urine and serum. RNA-seq was conducted to identify QSYQ regulated genes in hypertensive kidney, and RT-qPCR, immunohistochemistry, and Western blotting analysis were performed to verify the transcriptomics results and validate the purposed mechanisms. RESULTS: QSYQ treatment significantly decreased blood pressure in Dahl salt-sensitive hypertensive rats, alleviated renal tissue damage, reduced renal interstitial fibrosis and collagen deposition, and improved renal physiological function. RNA-seq and subsequent bioinformatic analysis showed that the expression of ADRA1D and SIK1 genes were among the most prominently altered by QSYQ in salt-sensitive hypertensive rat kidney. RT-qPCR, immunohistochemistry and Western blotting results confirmed that the mRNA and protein expression levels of alpha-1D adrenergic receptor (ADRA1D) in the kidney tissue of the QSYQ-treated rats were markedly down-regulated, while the mRNA and protein levels of salt inducible kinase 1 (SIK1) were significantly increased. CONCLUSION: QSYQ not only lowered blood pressure, but also alleviated renal damage via reducing the expression of ADRA1D and increasing the expression of SIK1 in the kidney of Dahl salt-sensitive hypertensive rats.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Hypertension, Renal/drug therapy , Hypertension, Renal/metabolism , Nephritis/drug therapy , Nephritis/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Receptors, Adrenergic, alpha-1/biosynthesis , Sodium Chloride, Dietary/toxicity , Animals , Drugs, Chinese Herbal/pharmacology , Gene Expression , Male , Rats , Rats, Inbred Dahl
19.
Front Pharmacol ; 12: 638298, 2021.
Article in English | MEDLINE | ID: mdl-34084130

ABSTRACT

BACKGROUND: Hypertension-induced renal damage is a serious and complex condition that has not been effectively treated by conventional blood pressure-lowering drugs. Tengdan capsule (TDC) is a China FDA-approved compound herbal medicine for treating hypertension; however, its chemical basis and pharmacological efficacy have not been fully investigated in a preclinical setting. METHODS: High-performance liquid chromatography (HPLC) was used to identify and quantify the major chemical components of TDC extracted from ultrapure water. Adult spontaneously hypertensive rats (SHR) and age/sex-matched Wistar Kyoto normotensive rats (WKY) were both treated with TDC, losartan, or saline for one month, and their blood pressure (BP) was monitored at the same time by tail-cuff BP system. Biochemical indexes such as urine creatinine (CRE) and blood urea nitrogen (BUN) were determined. Kidney tissue sections were examined with (H&E), and Masson staining to evaluate the pathological effect of TDC on SHR's kidneys. After TDC treatment, the differentially expressed proteins in the kidneys of SHR were identified by the TMT-based quantitative proteomics analysis, which may provide the targets and possible mechanisms of TDC action. In addition, Western blot analysis, RT-qPCR, and ELISA assays were carried out to further verify the proteomics findings. Finally, two different models involving in vitro renal injuries were established using human kidney HEK293 cells; and the molecular mechanism of TDC kidney protection was demonstrated. RESULTS: Seven chemical compounds, namely Notoginsenoside R1, Ginsenoside RG1, Ginsenoside Re, Ginsenoside Rb1, Sodium Danshensu, Protocatechualdehyde, and Salvianolic acid B, were identified and quantified from the water-soluble extracts of TDC by HPLC. In vivo study using rats showed that TDC effectively reduced BP, BUN, and CRE levels and attenuated renal fibrosis in SHR, and ameliorated damage to the kidneys. Proteomics and subsequent bioinformatics analyses indicated that periostin-mediated inflammatory response and TGFß/Smad signaling pathway proteins were closely related to the therapeutic effect of TDC in rat kidneys. Western blot analysis and RT-qPCR showed that TDC markedly downregulated the mRNA and protein expression of periostin in renal tissues compared to the untreated SHR. In addition, TGF-ß and COL1A1 mRNA levels also decreased in SHR renal tissues following TDC treatment. In vitro studies showed that low to medium doses of TDC down-regulated the expression of periostin in the injury model of HEK293 cell. In addition, medium to high doses of TDC significantly inhibited collagen deposition in TGFß1-induced HEK293 cell fibrosis. CONCLUSIONS: Major components from the compound herbal medicine Tengdan Capsule are identified and quantified. TDC effectively lowers blood pressure and protects against renal damage caused by hypertension in SHR. Mechanistically, TDC blocks periostin by regulating the TGF-ß/Smad signaling pathway in the kidney, both in vivo and in vitro. Preventing periostin-mediated renal fibrosis and inflammation might be a promising strategy for treating a hypertensive renal injury.

20.
Biomed Pharmacother ; 141: 111828, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146848

ABSTRACT

A mild ischemic stroke may cause both debilitating locomotor and cognitive decline, for which the mechanism is not fully understood, and no therapies are currently available. In this study, a nonfatal stroke model was constructed in mice by a modified middle cerebral artery occlusion (MCAO) procedure, allowing an extended recovery period up to 28 days. The extended MCAO model successfully mimicked phenotypes of a recovery phase post-stroke, including locomotor motor and cognitive deficiencies, which were effectively improved after Shuxuening injection (SXNI) treatment. Tissue slices staining showed that SXNI repaired brain injury and reduced neuronal apoptosis, especially in the hippocampus CA3 region. Transcriptomics sequencing study revealed 565 differentially expressed genes (DEGs) in the ischemic brain after SXNI treatment. Integrated network pharmacological analysis identified Neurotrophin/Trk Signaling was the most relevant pathway, which involves 15 key genes. Related DEGs were further validated by RT-PCR. Western-blot analysis showed that SXNI reversed the abnormal expression of BDNF, TrkB, Mek3 and Jnk1after stroke. ELISA found that SXNI increased brain level of p-Erk and Creb. At sub-brain level, the expression of BDNF and TrkB was decreased and GFAP was increased on the hippocampal CA3 region in the post-stroke recovery phase and this abnormality was improved by SXNI. In vitro experiments also found that oxygen glucose deprivation reduced the expression of BDNF and TrkB, which was reversed by SXNI. In summary, we conclude that SXNI facilitates the recovery of cognitive and locomotor dysfunction by modulating Neurotrophin/Trk Signaling in a mouse model for the recovery phase of post-ischemic stroke.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Drugs, Chinese Herbal/therapeutic use , Hippocampus/metabolism , Movement Disorders/drug therapy , Movement Disorders/etiology , Nerve Growth Factors/drug effects , Receptor, trkA/drug effects , Signal Transduction/drug effects , Stroke Rehabilitation/methods , Stroke/complications , Animals , Cell Line , Drugs, Chinese Herbal/administration & dosage , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Psychomotor Performance/drug effects , Recovery of Function , Stroke/psychology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL