Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Article in English | MEDLINE | ID: mdl-37381987

ABSTRACT

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Subject(s)
Cation Transport Proteins , Homeostasis , Infarction, Middle Cerebral Artery , Ischemic Stroke , Thrombosis , Animals , Humans , Mice , Blood Platelets/metabolism , Calcium/metabolism , Cations/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/complications , Ischemic Stroke/metabolism , Magnesium/metabolism , Platelet Activation , Platelet Aggregation , Platelet Membrane Glycoproteins/metabolism , Thrombosis/genetics , Thrombosis/metabolism , TRPC6 Cation Channel/metabolism , Cation Transport Proteins/deficiency
2.
Circ Res ; 131(8): 701-712, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36102188

ABSTRACT

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Drinking Water , Plaque, Atherosclerotic , Amino Acids , Animals , Apolipoproteins E , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Female , Homoarginine/pharmacology , Mice , Myosin Heavy Chains , T-Lymphocytes/metabolism
3.
Res Pract Thromb Haemost ; 6(3): e12699, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35494506

ABSTRACT

Background: Prothrombin complex concentrate (PCC) is a human plasma-derived mixture of partially purified vitamin K-dependent coagulation factors (VKCF). Current therapeutic indication is treatment and perioperative prophylaxis of bleeding in acquired VKCF deficiency. Off-label uses include treatment of direct factor Xa- or thrombin inhibitor-associated bleeds, treatment of trauma-induced coagulopathy, and hemorrhagic complications in patients with liver disease. Objective: Considering PCC as a general prohemostatic drug, we argued that its clinical efficacy can benefit from supplementation with coagulation factors that are absent in the current PCC formulation. In this study, we focused on factor V. Methods: We mimicked a coagulopathy in vitro by spiking whole blood or derived plasma with the direct oral anticoagulants (DOAC) rivaroxaban or dabigatran. We studied DOAC reversal by PCC and factor V concentrate (FVC) using a thrombin generation assay, thromboelastography, fibrin generation clot lysis test, and microfluidic thrombus formation under flow. Results: In DOAC-treated plasma, PCC increased the amount of thrombin generated. The addition of FVC alone or in combination with PCC caused a partial correction of the thrombin generation lag time and clotting time. In DOAC-treated whole blood, the combination of PCC and FVC synergistically improved clotting time under static conditions, whereas complete correction of fibrin formation was observed under flow. Clot strength and clot resistance toward tissue plasminogen activator-induced lysis were both increased with PCC and further enhanced by additional FVC. Conclusion: Our in vitro study demonstrates a beneficial effect of the combined use of PCC and FVC in DOAC reversal.

4.
Atherosclerosis ; 310: 17-25, 2020 10.
Article in English | MEDLINE | ID: mdl-32877806

ABSTRACT

BACKGROUND AND AIMS: Platelets can release extracellular vesicles (EVs) upon stimulation with various agonists. Interestingly, platelets from patients with Glanzmann thrombasthenia have reduced EV release. These platelets lack functional αIIbß3 integrins, indicating that αIIbß3 integrin is critical in vesicle release. Integrin activation is central in platelet function and is associated with e.g. adhesion, aggregation and cytoskeletal rearrangement. However, while platelet activation pathways are widely known, the mechanisms underlying EV release remain uncharacterized. We investigated the role of integrin αIIbß3, phosphatidyl serine (PS) exposure, cytoskeletal rearrangement and their associated signalling pathways in EV release. METHODS: EVs were isolated from activated platelets. Platelet activation status was measured by multicolour flow cytometry. A panel of pharmacologic inhibitors was used to interfere in specific signalling pathways. EV release was quantified enzymatically based on membrane PS content and nanoparticle tracking analysis. In addition, real-time visualization of EV shedding with confocal microscopy and EVs with Cryo-TEM imaging was performed. RESULTS: Platelet activation with convulxin resulted in higher EV release than with activation by thrombin. Kinetic measurements indicated that EV release followed the pattern of αIIbß3 integrin activation and subsequent closure paralleled by PS exposure. Prevention of αIIbß3 activation with the inhibitor tirofiban dramatically suppressed EV release. Similar results were obtained using αIIbß3-deficient platelets from patients with Glanzmann thrombasthenia. Inhibition of actin cytoskeleton rearrangement decreased EV release, whereas inhibition of individual signalling targets upstream of cytoskeletal rearrangement showed no such effects. CONCLUSION: Platelet EV release requires three main events: integrin activation and closure, PS exposure, and cytoskeletal rearrangement.


Subject(s)
Extracellular Vesicles , Phosphatidylserines , Blood Platelets , Humans , Integrin beta3 , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex
5.
Thromb Haemost ; 106(6): 1179-88, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22071958

ABSTRACT

Platelet P2Y12 receptors play an important role in arterial thrombosis by stimulating thrombus growth. Both irreversibly (clopidogrel) and reversibly binding (ticagrelor, AZD6140) P2Y12 antagonists are clinically used for restricted periods, but possible differences in platelet function recovery after drug cessation have not been investigated. We treated WKY rats with a single, high dose of 200 mg/kg clopidogrel or 40 mg/kg ticagrelor. Blood was collected at different time points after treatment. Flow cytometry confirmed full platelet protection against ADP-induced αIIbß3 activation shortly after clopidogrel or ticagrelor treatment. At later time points after clopidogrel treatment, a subpopulation of juvenile platelets appeared that was fully responsive to ADP. Addition of ticagrelor to clopidogrel-treated blood reduced αIIbß3 activation of the unprotected platelets. In contrast, at later time points after ticagrelor treatment, all platelets gradually lost their protection against ADP activation. Perfusion experiments showed abolishment of thrombus formation shortly after clopidogrel or ticagrelor treatment. Thrombus formation on collagen was determined under high shear flow conditions. At later time points, large thrombi formed in the clopidogrel but not in the ticagrelor group, and unprotected, juvenile platelets preferentially incorporated into the formed thrombi. However, platelets from both groups were still similarly reduced in assays of whole blood aggregation. Conclusively, recovery of rat platelet function after ticagrelor differs mechanistically from that after clopidogrel. This difference is masked by conventional platelet aggregation methods, but is revealed by thrombus formation measurement under flow. Juvenile platelets formed at later time points after clopidogrel treatment promoted thrombus formation.


Subject(s)
Adenosine/analogs & derivatives , Blood Platelets/metabolism , Purinergic P2Y Receptor Antagonists/administration & dosage , Thrombosis/drug therapy , Ticlopidine/analogs & derivatives , Adenosine/administration & dosage , Adenosine/adverse effects , Adenosine Diphosphate/metabolism , Animals , Blood Platelets/drug effects , Blood Platelets/pathology , Clopidogrel , Cytoprotection/drug effects , Platelet Activation/drug effects , Protein Binding , Purinergic P2Y Receptor Antagonists/adverse effects , Rats , Rats, Inbred WKY , Thrombosis/metabolism , Thrombosis/pathology , Ticagrelor , Ticlopidine/administration & dosage , Ticlopidine/adverse effects
6.
Arterioscler Thromb Vasc Biol ; 28(11): 2023-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18757293

ABSTRACT

OBJECTIVE: In hyperlipidemia, dietary fish oil containing n-3 polyunsaturated fatty acids (PUFA) provokes plasma triacylglycerol lowering and hypocoagulant activity. Using APOE2 knock-in mice, the relation of these fish-oil effects with altered gene expression was investigated. METHODS AND RESULTS: Male APOE2 knock-in mice, fed regular low-fat diet, had elevated plasma levels of triacylglycerol and coagulation factors. Plasma lipids and (anti)coagulant factors reduced on feeding the mice with fish oil (n-3 PUFA) or, to a lesser degree, with sunflower seed oil (n-6 PUFA). The fish-oil diet provoked a 40% reduction in thrombin generation. Microarray (Affymetrix) and single-gene expression analysis of mouse livers showed that fish oil induced: (1) upregulation of genes contributing to lipid degradation and oxidation; (2) downregulation of genes of gamma-glutamyl carboxylase and of transcription factors implicated in lipid synthesis; (3) unchanged expression of coagulation factor genes. After fish-oil diet, vitamin K-dependent coagulation factors accumulated in periportal areas of the liver; prothrombin was partly retained in uncarboxylated form. Only part of the changes in gene expression were different from the effects of sunflower seed oil diet. CONCLUSIONS: The hypocoagulant effect of n-3 PUFA is not caused by reduced hepatic synthesis of coagulation factors, but rather results from retention of uncarboxylated coagulation factors. In contrast, the lipid-lowering effect of n-3 PUFA links to altered expression of genes that regulate transcription and fatty acid metabolism.


Subject(s)
Anticoagulants/pharmacology , Apolipoprotein E2/metabolism , Blood Coagulation/drug effects , Fatty Acids, Omega-3/pharmacology , Hyperlipidemias/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Protein Processing, Post-Translational/drug effects , Animals , Anticoagulants/administration & dosage , Apolipoprotein E2/genetics , Blood Coagulation/genetics , Blood Coagulation Factors/metabolism , Diet , Disease Models, Animal , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Humans , Hyperlipidemias/blood , Hyperlipidemias/genetics , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Plant Oils/pharmacology , RNA, Messenger/metabolism , Sunflower Oil , Time Factors , Transcription, Genetic/drug effects , Triglycerides/blood
7.
Toxicol Appl Pharmacol ; 222(1): 89-96, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17537471

ABSTRACT

Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H(2)O(2)-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.


Subject(s)
Free Radical Scavengers/pharmacology , Quercetin/pharmacology , Animals , Antimetabolites/pharmacology , Buthionine Sulfoximine/pharmacology , Calcium/metabolism , DNA Damage , Electrophoresis, Polyacrylamide Gel , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glutathione/metabolism , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/toxicity , L-Lactate Dehydrogenase/metabolism , Lung Diseases/chemically induced , Lung Diseases/pathology , Oxidative Stress/drug effects , Rats
8.
Arterioscler Thromb Vasc Biol ; 24(9): 1734-40, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15217806

ABSTRACT

OBJECTIVE: The beneficial effect of dietary fish oil, rich in omega-3 polyunsaturated fatty acids (PUFAs), on cardiovascular disease is multifactorial and may partly rely on their anticoagulant action. We studied how fish oil intake influenced thrombin generation in plasma and which factors were involved herein. METHODS AND RESULTS: Twenty-five healthy males with borderline overweight received 3.0 g omega-3 PUFAs daily for 4 weeks. Fish oil intake reduced plasma triglycerides and lowered platelet integrin activation, as well as plasma levels of fibrinogen and factor V, but had no effect on vitamin K-dependent coagulation factors. Before fish oil intake, thrombin generation (reflecting the coagulant potential) considerably varied between plasmas from individual subjects, which were partly explained by variation in prothrombin, antithrombin, fibrinogen, and factor V levels. Fish oil intake reduced thrombin generation in the presence and absence of platelets. This reduction correlated with the fish oil effect on fibrinogen and factor V levels. Interestingly, the lowering effect of fish oil on thrombin generation and fibrinogen clustered around subjects with high fibrinogen carrying a structural fibrinogen alpha-chain polymorphism. CONCLUSIONS: Dietary omega-3 PUFAs provoke a hypocoagulant, vitamin K-independent effect in humans, the degree of which may depend on fibrinogen level. Intake of fish oil reduced fibrinogen and factor V levels as well as thrombin generation in plasma. The effects on thrombin generation and fibrinogen clustered around subjects with high fibrinogen carrying alpha-chain fibrinogen polymorphism. Thus, dietary fish oil can provoke a hypocoagulant effect depending on the fibrinogen level.


Subject(s)
Blood Coagulation/drug effects , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Adult , Blood Cell Count , Blood Platelets/metabolism , Body Mass Index , Cholesterol, LDL/blood , Factor V/analysis , Fibrinogen/analysis , Fibrinogen/genetics , Humans , Male , Middle Aged , Obesity/blood , Peptide Fragments/pharmacology , Platelet Activation/drug effects , Polymorphism, Genetic , Thrombin/biosynthesis , Triglycerides/blood
9.
FASEB J ; 17(6): 685-7, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12586747

ABSTRACT

Platelets interact vigorously with subendothelial collagens that are exposed by injury or pathological damage of a vessel wall. The collagen-bound platelets trap other platelets to form aggregates, and they expose phosphatidylserine (PS) required for coagulation. Both processes are implicated in the formation of vaso-occlusive thrombi. We previously demonstrated that the immunoglobulin receptor glycoprotein VI (GPVI), but not integrin alpha2beta1, is essential in priming platelet-collagen interaction and subsequent aggregation. Here, we report that these receptors have yet a complementary function in ex vivo thrombus formation during perfusion of whole blood over collagen. With mice deficient in GPVI or blocking antibodies, we found that GPVI was indispensable for collagen-dependent Ca2+ mobilization, exposure of PS, and aggregation of platelets. Deficiency of integrin beta1 reduces the GPVI-evoked responses but still allows the formation of loose platelet aggregates. By using mice deficient in G(alpha)q or specific thromboxane A2 and ADP antagonists, we show that these autocrine agents mediated aggregation but not collagen-induced Ca2+ mobilization or PS exposure. Collectively, these data indicate that integrin alpha2beta1 facilitates the central function of GPVI in the platelet activation processes that lead to thrombus formation, whereas the autocrine thromboxane A2 and ADP serve mainly to trigger aggregate formation.


Subject(s)
Blood Platelets/metabolism , Integrin alpha2beta1/physiology , Platelet Membrane Glycoproteins/physiology , Thrombosis/metabolism , Adenosine Diphosphate/metabolism , Animals , Blood Platelets/drug effects , Calcium/metabolism , Collagen/administration & dosage , Collagen/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11 , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/physiology , Integrin alpha2beta1/blood , Integrin alpha2beta1/genetics , Mice , Mice, Knockout , Platelet Adhesiveness/drug effects , Platelet Adhesiveness/physiology , Platelet Aggregation/drug effects , Platelet Membrane Glycoproteins/genetics , Receptors, IgG/genetics , Receptors, IgG/physiology , Thromboxane A2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL