Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Physiol Biochem ; 78(1): 109-124, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35091983

ABSTRACT

Recent studies have suggested that irisin may act as a potential neurokine. Exercise and L-carnosine supplementation showed neuroprotective effects in Alzheimer's disease (AD)-like conditions. However, the regulation of irisin in the hippocampus of streptozotocin (STZ)-induced memory impairment and its relation to insulin signalling remain to be investigated. This study was designed to compare the effect of swimming exercise and L-carnosine intake on serum, CSF and hippocampal irisin in rats received intracerebroventricular (ICV) injection of STZ. Rats were recruited in swimming paradigm, received oral carnosine (100 mg/kg/day) or vehicle treated. After 5 weeks, rats were sacrificed after neurobehavioural testing. CSF and serum irisin were determined. Hippocampal tissues were used to assess expression of FNDC5/irisin, BDNF and proteins related to insulin signalling, in addition to ß-amyloid peptide and phosphorylated tau protein levels. We observed decreased hippocampal, but not CSF or serum, irisin in ICV-STZ-injected rats. Exercise and carnosine intake almost normalized hippocampal FNDC5/irisin expression which was associated with reduced soluble ß-amyloid peptide and phosphorylated tau protein, improved BDNF and insulin signalling proteins, with corresponding mitigated cognitive impairments. However, hippocampal FNDC5/irisin was not correlated with serum or CSF irisin levels. Histologically, both interventions ameliorated the hippocampal damage in STZ-injected rats. The current study reveals that carnosine is equivalent to exercise in reversing cognitive decline and Alzheimer's biomarkers. In both interventions, enhancement of hippocampal FNDC5/irisin and insulin signalling may be involved in mediating these neuroprotective effects.


Subject(s)
Alzheimer Disease , Carnosine , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Animals , Carnosine/metabolism , Carnosine/pharmacology , Dietary Supplements , Fibronectins/metabolism , Fibronectins/pharmacology , Hippocampus/metabolism , Rats , Swimming
2.
Drug Deliv ; 28(1): 2229-2240, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34668818

ABSTRACT

Fungal infections of the paranasal cavity are among the most widely spread illnesses nowadays. The aim of the current study was to estimate the effectiveness of an in situ gel loaded with voriconazole‒clove oil nano-transferosomes (VRC-CO-NT) in enhancing the activity of voriconazole against Aspergillus flavus, which causes rhinosinusitis. The nephrotoxic side effects of voriconazole may be reduced through the incorporation of the clove oil, which has antioxidant activity that protects tissue. The Box‒Behnken design was applied to formulate the VRC-CO-NT. The particle size, entrapment efficiency, antifungal inhibition zone, and serum creatinine concentration were considered dependent variables, and the soybean lecithin, VRC, and CO concentrations were considered independent ones. The final optimized formulation was loaded into a deacetylated gellan gum base and evaluated for its gelation, rheological properties, drug release profile, permeation capabilities, and in vivo nephrotoxicity. The optimum formulation was determined to be composed of 50 mg/mL lecithin, 18 mg/mL VRC, and 75 mg/mL CO, with a minimum particle size of 102.96 nm, an entrapment efficiency of 71.70%, an inhibition zone of 21.76 mm, and a serum creatinine level of 0.119 mmol/L. The optimized loaded in situ gel released 82.5% VRC after 12 hours and resulted in a 5.4-fold increase in drug permeation. The in vivo results obtained using rabbits resulted in a nonsignificant differentiation among the renal function parameters compared with the negative control group. In conclusion, nasal in situ gel loaded with VRC-CO-NT is considered an efficient novel carrier with enhanced antifungal properties with no signs of nephrotoxicity.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Clove Oil/pharmacology , Nanoparticles/chemistry , Voriconazole/pharmacology , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Antifungal Agents/pharmacokinetics , Bacterial Outer Membrane Proteins , Biomarkers , Chemistry, Pharmaceutical , Clove Oil/administration & dosage , Creatinine/blood , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Liberation , Gels/chemistry , Kidney Diseases/chemically induced , Liposomes/chemistry , Paranasal Sinuses/metabolism , Particle Size , Rabbits , Rheology , Voriconazole/administration & dosage , Voriconazole/adverse effects , Voriconazole/pharmacokinetics
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 140: 524-33, 2015 Apr 05.
Article in English | MEDLINE | ID: mdl-25645231

ABSTRACT

A novel method was developed for spectral resolution and further determination of five-component mixture including Vitamin B complex (B1, B6, B12 and Benfotiamine) along with the commonly co-formulated Diclofenac. The method is simple, sensitive, precise and could efficiently determine the five components by a complementary application of two different techniques. The first is univariate second derivative method that was successfully applied for determination of Vitamin B12. The second is Multivariate Curve Resolution using the Alternating Least Squares method (MCR-ALS) by which an efficient resolution and quantitation of the quaternary spectrally overlapped Vitamin B1, Vitamin B6, Benfotiamine and Diclofenac sodium were achieved. The effect of different constraints was studied and the correlation between the true spectra and the estimated spectral profiles were found to be 0.9998, 0.9983, 0.9993 and 0.9933 for B1, B6, Benfotiamine and Diclofenac, respectively. All components were successfully determined in tablets and capsules and the results were compared to HPLC methods and they were found to be statistically non-significant.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Diclofenac/analysis , Thiamine/analogs & derivatives , Thiamine/analysis , Vitamin B 12/analysis , Vitamin B 6/analysis , Vitamins/analysis , Capsules , Chromatography, High Pressure Liquid , Least-Squares Analysis , Limit of Detection , Multivariate Analysis , Spectrophotometry/methods , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL