Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Curr Protoc ; 3(12): e941, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38112503

ABSTRACT

Pathogenic germline variants causally contribute to the etiology of colorectal cancer (CRC) and polyposis. The era of massively parallel sequencing, also known as next-generation sequencing (NGS), make it highly possible, effective, and efficient to offer rapid and cost-effective diagnosis for CRC. To aid clinical laboratories in testing the most clinically significant genes, along with the published ACMG CRC technical standard guidelines, this protocol aims to provide a step-by-step technical workflow for carrying out the NGS-panel based CRC molecular diagnosis focusing on the wet lab portion of library preparation and massively parallel sequencing. Using the most popular pull-down-based target enrichment, the chapter particularly encompasses genomic DNA (gDNA) fragmentation, adapter ligation, indexing, hybridization, and capture, which is the most variable and technically challenging part of NGS testing involving at least 3 quality control (QC) checkpoints plus the pre- and post-capture PCR. The gDNA extraction and sequencing is less covered because they are relatively standard technologies with little variations and choices. Although this protocol also introduces pertinent testing algorithms and a brief guideline for pre- and post-testing genetic counselling, the audiences are required to refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine the most appropriate testing strategies. Since NGS panel-based testing is a highly complex and dynamic platform with multiple choices from different technology and commercial resources, this technical benchtop-based protocol also aims to cover some of the key ramification points for decision-making by each laboratory at the discretion of the directors. © 2023 Wiley Periodicals LLC. Basic Protocol: Hereditary colorectal cancer (CRC) diagnosis by next-generation sequencing.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Genetic Testing/methods , Germ-Line Mutation , Genomics , High-Throughput Nucleotide Sequencing/methods
2.
Genet Med ; 23(10): 1807-1817, 2021 10.
Article in English | MEDLINE | ID: mdl-34140662

ABSTRACT

Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer and 30% of all cases of CRC are believed to have a familial component and up to one-third of these (10%) are hereditary. Pathogenic germline variants in multiple genes have been associated with predisposition to hereditary CRC or polyposis. Lynch syndrome (LS) is the most common hereditary CRC syndrome, caused by variants in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 and is inherited in a dominant manner. Heritable conditions associated with colonic polyposis include familial adenomatous polyposis (FAP) associated with APC pathogenic variants, MUTYH-associated polyposis (MAP) caused by biallelic MUTYH pathogenic variants, and polymerase proofreading-associated polyposis (PPAP) caused by POLE or POLD1 pathogenic variants. Given the overlapping phenotypes of the cancer syndromes along with the limited sensitivity of using clinical criteria alone, a multigene panel testing approach to diagnose these conditions using next-generation sequencing (NGS) is effective and efficient. This technical standard is not recommended for use in the clinic for patient evaluation. Please refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine an appropriate testing strategy and guide medical screening and management. This 2021 edition of the American College of Medical Genetics and Genomics (ACMG) technical standard supersedes the 2013 edition on this topic.


Subject(s)
Colorectal Neoplasms , Genetics, Medical , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing , Genomics , Germ-Line Mutation/genetics , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL