Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Appl Microbiol ; 132(4): 2832-2843, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34850500

ABSTRACT

AIMS: The objective of this study was to determine the best conditions to produce invertase by Cunninghamella echinulata PA3S12MM and to immobilize and apply the enzyme. METHODS AND RESULTS: The maximum production was verified in 8 days of cultivation at 28°C supplemented with 10 g L-1 apple peel, reaching 1054.85 U ml-1 . The invertase was purified from the DEAE-Sephadex column. The derivative immobilized in alginate-gelatin-calcium phosphate showed reusability >50% for 19 cycles. The derivative immobilized in glutaraldehyde-chitosan showed greater thermostability and at a different pH. The hydrolysis of 15 ml of sucrose 500 g L-1 in a fixed bed reactor (total volume of 31 ml) produced 24.44 µmol min-1 of glucose and fructose at a residence time of 30 min and a conversion factor of 0.5. CONCLUSIONS: The new wild strain C. echinulata PA3S12MM presents high invertase production in medium supplemented with an agro-industrial residue and the immobilized enzyme showed high thermal stability and resistance at a different pH. SIGNIFICANCE AND IMPACT OF THE STUDY: The fungus C. echinulata PA3S12MM is an excellent producer of invertases in Vogel medium supplemented with apple peel. The enzyme is promising for industrial application since it has good performance in reusability and inverted sugar production.


Subject(s)
Cunninghamella , beta-Fructofuranosidase , Cunninghamella/metabolism , Enzyme Stability , Enzymes, Immobilized , Fructose , Hydrogen-Ion Concentration , Temperature , beta-Fructofuranosidase/metabolism
2.
Int J Biol Macromol ; 102: 779-788, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28412339

ABSTRACT

Microbial amylases are used to produce ethanol, glucose and can be applied in textiles products, detergents and other industries. This study aimed to determine the best carbon source concentration to induce the amylase production by A. japonicus, and its purification and biochemical characterization. For that, this fungus was cultivated in Khanna medium, pH 5.5, for 4 days, at 25°C, in static condition, supplemented with potato starch and maltose in different concentrations. The fungal crude enzymatic extract was purified in a unique elution in DEAE-cellulose column and the molecular mass was determined as 72kDa. The optimum temperature and pH was 65°C and 5.0, respectively. Amylase remained 75% of its activity after one hour at 50°C and was stable in the pH range 3.0-7.0. The analysis of the end-products by thin layer chromatography showed only glucose formation, which characterizes the purified enzyme as a glucoamylase. Amylopectin was the best substrate for the enzyme assay and Mn+2 and Pb+2 were good glucoamylase activators. This activation, in addition to the biochemical characteristics are important results for future biotechnological applications of this glucoamylase in the recycling and deinking process by the paper industries.


Subject(s)
Aspergillus/enzymology , Glucan 1,4-alpha-Glucosidase/isolation & purification , Glucan 1,4-alpha-Glucosidase/metabolism , Lead/pharmacology , Manganese/pharmacology , Amylose/metabolism , Dose-Response Relationship, Drug , Edetic Acid/pharmacology , Enzyme Activation/drug effects , Glucan 1,4-alpha-Glucosidase/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Maltose/pharmacology , Mercaptoethanol/pharmacology , Molecular Weight , Phylogeny , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL