Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Neurol ; 11: 999, 2020.
Article in English | MEDLINE | ID: mdl-33178093

ABSTRACT

Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.

2.
Cell Stress Chaperones ; 25(3): 549-558, 2020 05.
Article in English | MEDLINE | ID: mdl-31970694

ABSTRACT

Astaxanthin is a powerful carotenoid antioxidant prevalent in marine organisms and approved as a food supplement. Recent studies have demonstrated Astaxanthin's beneficial attributes in various health states. Following initial reports of potential heat protective properties in Astaxanthin supplemented rats, we present here results of a novel study examining the effect of Astaxanthin supplementation on the heat shock response in rats in relation to core temperature (Tc) and the ensuing physiological strain. Two hours of heat stress at 41 °C during which rats developed their thermoregulatory hyperthermic plateau resulted in progressive increases in HSP72 and HSP27 in the Astaxanthin (Oleoresin)-treated group but not in the control (Olive oil) group. Enhanced elevation in HSPs suggests that Astaxanthin supplementation may augment the cellular stress protective response to heat stress.


Subject(s)
Heat-Shock Proteins/metabolism , Heat-Shock Response/drug effects , Animals , Liver/metabolism , Male , Myocardium/metabolism , Rats, Sprague-Dawley , Xanthophylls/pharmacology
3.
Article in English | MEDLINE | ID: mdl-33344941

ABSTRACT

Objectives: To examine the supplementation effects of the xanthophyll carotenoid Astaxanthin on physical performance and exertional heat strain in humans. Design: A randomized double blind placebo controlled trial. Methods: Twenty two male participants (Age: 23.14 ± 3.5 y, height: 175 ± 6 cm, body mass: 69.6 ± 8.7 kg, % body fat: 16.8 ± 3.8) received placebo (PLA, n = 10) or Astaxanthin (ATX, n = 12) 12 mg/day Per os (P.O), for 30 days, and were tested pre and post-supplementation with a maximal oxygen uptake (VO2 Max) test and the heat tolerance test (HTT) (2 h walk at 40°C, 40% relative humidity (RH), 5 kph, 2% incline). NIH database registration no. NCT02088242. Gas exchange, Heart rate (HR), Relative perceived exertion (RPE), and blood lactate were measured during the VO2 Max test. Heart rate (HR), rectal (Trec), and skin (Tskin) temperatures, RPE, and sweat rate (SR) were monitored in the HTT. Serum heat shock protein 72 (HSP72), Creatine phospho-kinase (CPK), C-reactive protein (CRP), and lipid profile were measured before and after the test. Results: The rise in blood lactate caused by the VO2 Max test was significantly diminished in the ATX group (9.4 ± 3.1 and 13.0 ± 3.1 mmole*l-1 in the ATX and PLA groups, respectively P < 0.02), as was the change in oxygen uptake during recovery (-2.02 ± 0.64 and 0.83 ± 0.79% of VO2 Max in the ATX and PLA group, respectively, p = 0.001). No significant differences were observed in the anaerobic threshold or VO2 Max. In the HTT, no significant physiological or biochemical differences were observed (HR <120 bpm, Trec rose by ~1°C to <38°C, no difference in SR). Conclusions: Astaxanthin supplementation improved exercise recovery. No benefit was observed for ATX over PLA in response to heat stress. Further examination of Astaxanthin in higher exertional heat strain is required.

4.
Sports Med ; 34(8): 501-11, 2004.
Article in English | MEDLINE | ID: mdl-15248787

ABSTRACT

The prognosis of heat stroke in patients is directly related to the degree of hyperthermia and its duration. Therefore, the most important feature in the treatment of heat stroke is rapid cooling. Several cooling methods have been presented in the literature including immersion in water at different temperatures, evaporative cooling, ice pack application, pharmacological treatment and invasive techniques. This article describes the various cooling techniques in terms of efficacy, availability, adverse effects and mortality rate. Data suggest that cooling should be initiated immediately at time of collapse and should be based on feasible field measures including ice or tepid water (1-16 degrees C), which are readily available. In the emergency department, management should be matched to the patient's age and medical background and include immersion in ice water (1-5 degrees C) or evaporative cooling.


Subject(s)
Cryotherapy/methods , Heat Stroke/therapy , Animals , Body Temperature Regulation/physiology , Cryotherapy/instrumentation , Dantrolene/therapeutic use , Gastric Lavage/instrumentation , Gastric Lavage/methods , Heat Stroke/physiopathology , Humans , Hydrotherapy/instrumentation , Hydrotherapy/methods , Muscle Relaxants, Central/therapeutic use , Peritoneal Lavage/instrumentation , Peritoneal Lavage/methods
SELECTION OF CITATIONS
SEARCH DETAIL