Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pol J Vet Sci ; 25(4): 535-546, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36649097

ABSTRACT

The aim of this study was to investigate the impact of feed supplements with alfa-amylase and beta-glucanase (Optipartum C+ 200) on ingestive-related behaviour biomarkers registered with real-time sensors: rumination behaviours and reticulorumen parameters (pH and temperature). Cows (n=20) in the treatment group (TG) were fed with Optipartum C+ 200 (Enzymes feed supplement: Alfa-Amylase 57 Units; Beta-Glucanase 107 Units) from 21 days before calving until 30 days after calving with a feeding rate of 200 g/cow/day. Cows (n=22) in the control group (CG) were fed a feed ration without feed supplement. Measurements started from 6 days before calving and continued until 21 days after calving. The following indicators were registered: with the RumiWatch System: Rumination time; Eating time; Drinking time; Rumination chews; Eating chews; Drinking gulps; Bolus; Chews per minute; Chews per bolus. With the SmaXtec system: the temperature, pH of the contents of the cows' reticulorumens, and cows' walking activity. According to our results, feed supplementation with alfa-amylase and beta-glucanase (Optipartum C+ 200) in the TG group resulted in increases in the following parameters: 9% rumination time and eating time, 19% drinking time, 11% rumination chews, 16% eating chews, 13% number of boluses per rumination, 5% chews per minute and 16% chews per bolus. The rumination time showed a strong, positive relation with rumination chews and bolus indicators in both groups (TG and CG) (p⟨0.001); while the rumination time in both groups of cows showed an opposite direction and was negatively related to eating time and eating chews (p⟨0.05). We found a 1.28 % lower reticulorumen pH and a 0.64 % lower reticulorumen temperature in cows fed with the supplement compared with cows in the control group. Cows in TG were 8.80% more active than those in the CG group. For improvement of ingestive-related behaviour we suggest adding a feed supplement with alfa-amylase and beta-glucanase (Optipartum C+ 200).


Subject(s)
Animal Feed , Cellulase , Dietary Supplements , Digestion , alpha-Amylases , Animals , Cattle , Female , alpha-Amylases/pharmacology , Animal Feed/analysis , Diet/veterinary , Feeding Behavior/drug effects , Cellulase/pharmacology , Digestion/drug effects
2.
Water Sci Technol ; 67(2): 261-70, 2013.
Article in English | MEDLINE | ID: mdl-23168622

ABSTRACT

Nutrients in river systems originate from multiple emission sources, follow various pathways, and are subject to processes of conversion and fate. One approach to tackle this complexity is to apply balance-oriented models. Although these models operate on a coarse temporal and spatial scale, they are capable of assessing the significance of the different emission sources and their results can be the basis for developing integrated water quality management schemes. In this paper we propose and apply a methodology to evaluate the attributiveness of such model results with regard to the modelled emission pathways. The MONERIS (MOdelling Nutrient Emissions in RIver Systems) model is set up, assuming plausible ranges of emission levels from four principal sources. The sensitivity of model performance is computed and related to the contribution from the pathways. The approach is applied for a case study in the upper Western Bug catchment (Ukraine). Coefficient of determination (R(2)) is found insensitive against the model assumptions, at levels around 0.65 for nitrogen and 0.55 for phosphorous emissions. Relative mean absolute error is minimized around 0.2 for both nutrients, but with equifinal combinations of the varied emission pathways. Model performance is constrained by the ranges of the emission assumptions to a limited extent only.


Subject(s)
Models, Theoretical , Statistics as Topic , Water Movements , Water Resources , Computer Simulation , Geography , Nitrogen/analysis , Phosphorus/analysis , Ukraine , Water Quality
3.
Biochemistry ; 37(46): 16152-64, 1998 Nov 17.
Article in English | MEDLINE | ID: mdl-9819207

ABSTRACT

Immunoglobulin E (IgE) mediates its effector functions via the Fc region of the molecule. IgE binding to and subsequent aggregation of the high-affinity receptor (Fc epsilon RI) by allergen plays a pivotal role in type I hypersensitivity responses. Earlier studies implicated the C epsilon 2 and 3 interface and the A-B loop in C epsilon 3 in the IgE-Fc epsilon RI interaction. These regions and glycosylation sites in C epsilon 3 were now targeted by site-specific mutagenesis. IgE binding to Fc epsilon RI was compared with surface plasmon resonance (SPR) measurements, which assessed the binding of the soluble extracellular domain of Fc epsilon RI to IgE. Kinetic analysis based on a pseudo-first-order model agrees with previous determinations. A more refined SPR-based kinetic analysis suggests a biphasic interaction. A model-free empirical analysis, comparing the binding strength and kinetics of native and mutant forms of IgE, identified changes in the kinetics of IgE-Fc epsilon RI interaction. Conservative substitutions introduced into the A-B loop have a small effect on binding, suggesting that the overall conformation of the loop is important for the complementary interaction, but multiple sites across the C epsilon 3 domain may influence IgE-Fc epsilon RI interactions. Asn394 is essential for the generation of a functional IgE molecule in mammalian cells. A role of Pro333 in the maintenance of a constrained conformation at the interface between C epsilon 2-3 emerged by studying the functional consequences of replacing this residue by Ala and Gly. These substitutions cause a dramatic decrease in the ability of the ligand to mediate stimulus secretion coupling, although only small changes in the association and dissociation rates are observed. Understanding the molecular basis of this phenomenon may provide important information for the design of inhibitors of mast cell degranulation.


Subject(s)
Amino Acids/physiology , Immunoglobulin E/physiology , Receptors, IgE/physiology , Animals , Genetic Vectors , Humans , Immunoglobulin E/genetics , Immunoglobulin E/metabolism , Kinetics , Leukemia, Basophilic, Acute , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Pichia/genetics , Protein Engineering , Rats , Receptor Aggregation , Receptors, IgE/genetics , Receptors, IgE/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemical synthesis , Recombinant Proteins/metabolism , Solubility , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL