Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Environ Sci Pollut Res Int ; 30(52): 112695-112709, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837596

ABSTRACT

Salinity stress is a major threat to crop growth and productivity. Millets are stress-tolerant crops that can withstand the environmental constraints. Foxtail millet is widely recognized as a drought and salinity-tolerant crop owing to its efficient ROS scavenging mechanism. Ascorbate peroxidase (APX) is one of the reactive oxygen species (ROS) scavenging enzymes that leads to hydrogen peroxide (H2O2) detoxification and stabilization of the internal biochemical state of the cell under stress. This inherent capacity of the APX enzyme can further be enhanced by the application of an external mitigant. This study focuses on the impact of salt (NaCl) and selenium (Se) application on the APX enzyme activity of foxtail millet using in silico and in-vitro techniques and mRNA expression studies. The NaCl was applied in the concentrations, i.e., 150 mM and 200 mM, while the Se was applied in 1 µM, 5 µM, and 10 µM concentrations. The in silico studies involved three-dimensional structure modeling and molecular docking. The in vitro studies comprised the morphological and biochemical parameters, alongside mRNA expression studies in foxtail millet under NaCl stress and Se applications. The in silico studies revealed that the APX enzyme showed better interaction with Se as compared to NaCl, thus suggesting the enzyme-modulating role of Se. The morphological and biochemical analysis indicated that Se alleviated the NaCl (150 mM and 200 mM) and induced symptoms at 1 µM as compared to 5 and 10 µM by enhancing the morphological parameters, upregulating the gene expression and enzyme activity of APX, and ultimately reducing the H2O2 content significantly. The transcriptomic studies confirmed the upregulation of chloroplastic APX in response to salt stress and selenium supplementation. Hence, it can be concluded that Se as a mitigant at lower concentrations can alleviate NaCl stress in foxtail millet.


Subject(s)
Selenium , Setaria Plant , Selenium/pharmacology , Selenium/metabolism , Setaria Plant/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Molecular Docking Simulation , Sodium Chloride/metabolism , Salt Stress , Antioxidants/metabolism , Dietary Supplements , RNA, Messenger/metabolism , Gene Expression Regulation, Plant
2.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35764090

ABSTRACT

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Subject(s)
Citrus sinensis , Gastrointestinal Microbiome , Animals , Citrus sinensis/metabolism , Dietary Fiber , Gastrointestinal Microbiome/physiology , Germ-Free Life , Humans , Mice , Pectins/metabolism , Polysaccharides/metabolism , Serotonin/analogs & derivatives
3.
J Fungi (Basel) ; 8(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35330313

ABSTRACT

The Ganoderma species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species, including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus, and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs). Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9, GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be used to develop further biotechnology and medicinal applications, together with ecological studies of the Ganoderma species.

4.
Science ; 373(6556): 774-779, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34385392

ABSTRACT

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Subject(s)
Mixed Function Oxygenases/metabolism , Pectins/metabolism , Phytophthora infestans/enzymology , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Copper , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Oxidation-Reduction , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Plant Leaves/parasitology , Polysaccharides/metabolism , Protein Conformation , Protein Domains , Virulence Factors/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism
5.
ISME J ; 13(6): 1437-1456, 2019 06.
Article in English | MEDLINE | ID: mdl-30728469

ABSTRACT

Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


Subject(s)
Colon/microbiology , Firmicutes/isolation & purification , Firmicutes/metabolism , Pectins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Firmicutes/classification , Firmicutes/genetics , Gastrointestinal Microbiome , Humans , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Proteomics
6.
Sci Rep ; 8(1): 1931, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386578

ABSTRACT

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Subject(s)
Agriculture , Coleoptera/genetics , Genome, Insect , Genomics , Solanum tuberosum/parasitology , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Female , Gene Expression Regulation , Genetic Variation , Genetics, Population , Host-Parasite Interactions/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Male , Molecular Sequence Annotation , Multigene Family , Pest Control, Biological , Phylogeny , RNA Interference , Transcription Factors/metabolism
7.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Article in English | MEDLINE | ID: mdl-29255254

ABSTRACT

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Subject(s)
Bacteroides/metabolism , Colon/microbiology , Diet , Pectins/metabolism , Polysaccharides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides/enzymology , Bacteroides/genetics , Bacteroides/growth & development , Genes, Bacterial/genetics , Glycoside Hydrolases , Hexuronic Acids , Humans , Mutagenesis, Site-Directed , Plant Cells/metabolism
8.
Mol Microbiol ; 107(2): 249-264, 2018 01.
Article in English | MEDLINE | ID: mdl-29139580

ABSTRACT

Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate-producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch-degrading α-amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ∼40-fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.


Subject(s)
Cell Wall/enzymology , Eubacterium/enzymology , Intestines/microbiology , Starch/metabolism , alpha-Amylases/metabolism , Carbohydrate Metabolism/genetics , Eubacterium/genetics , Host Microbial Interactions/genetics , Humans , Molecular Conformation , Mutation , Solanum tuberosum/microbiology , Zea mays/microbiology , alpha-Amylases/genetics
9.
Nature ; 544(7648): 65-70, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28329766

ABSTRACT

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.


Subject(s)
Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/metabolism , Biocatalysis , Gastrointestinal Tract/microbiology , Glycoside Hydrolases/metabolism , Pectins/chemistry , Pectins/metabolism , Bacteroides thetaiotaomicron/growth & development , Borates/chemistry , Borates/metabolism , Catalytic Domain , Gastrointestinal Microbiome , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/classification , Humans , Models, Molecular , Substrate Specificity
10.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27286965

ABSTRACT

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Subject(s)
Genome, Protozoan , Plant Diseases/parasitology , Solanum tuberosum/parasitology , Tylenchoidea/genetics , Tylenchoidea/pathogenicity , Animals , Enhancer Elements, Genetic , Gene Expression Profiling , Gene Transfer, Horizontal , Genomic Islands , Genomics/methods , High-Throughput Nucleotide Sequencing , Life Cycle Stages , Nucleotide Motifs , Position-Specific Scoring Matrices , RNA Splice Sites , RNA Splicing , Transcriptome , Tylenchoidea/growth & development , Virulence/genetics
11.
Planta ; 244(2): 347-59, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27072675

ABSTRACT

MAIN CONCLUSION: A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.


Subject(s)
Ascomycota/physiology , Cell Wall/metabolism , Corylus/microbiology , Mycorrhizae , Ascomycota/enzymology , Ascomycota/genetics , Carbohydrate Metabolism , Cell Wall/ultrastructure , Corylus/metabolism , Corylus/ultrastructure , Gene Expression Profiling , Pectins/analysis , Pectins/genetics , Pectins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/ultrastructure , Transcriptome
12.
BMC Genomics ; 17: 147, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920945

ABSTRACT

BACKGROUND: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens. RESULTS: Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/. Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70%) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation. CONCLUSION: This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.


Subject(s)
Bacteroides/metabolism , Dietary Fiber/metabolism , Pectins/metabolism , Sequence Analysis, RNA/methods , Bacteroides/genetics , Citrus/chemistry , Genetic Loci , Malus/chemistry , Mutagenesis , RNA, Bacterial/genetics , Transcriptome
13.
Appl Environ Microbiol ; 82(6): 1686-1692, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729713

ABSTRACT

The rapid rise in DNA sequencing has led to an expansion in the number of glycoside hydrolase (GH) families. The GH43 family currently contains α-l-arabinofuranosidase, ß-d-xylosidase, α-l-arabinanase, and ß-d-galactosidase enzymes for the debranching and degradation of hemicellulose and pectin polymers. Many studies have revealed finer details about members of GH43 that necessitate the division of GH43 into subfamilies, as was done previously for the GH5 and GH13 families. The work presented here is a robust subfamily classification that assigns over 91% of all complete GH43 domains into 37 subfamilies that correlate with conserved sequence residues and results of biochemical assays and structural studies. Furthermore, cooccurrence analysis of these subfamilies and other functional modules revealed strong associations between some GH43 subfamilies and CBM6 and CBM13 domains. Cooccurrence analysis also revealed the presence of proteins containing up to three GH43 domains and belonging to different subfamilies, suggesting significant functional differences for each subfamily. Overall, the subfamily analysis suggests that the GH43 enzymes probably display a hitherto underestimated variety of subtle specificity features that are not apparent when the enzymes are assayed with simple synthetic substrates, such as pNP-glycosides.


Subject(s)
Glycoside Hydrolases/classification , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Pectins/metabolism , Polysaccharides/metabolism , Protein Domains
14.
Environ Microbiol ; 17(12): 4954-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26235304

ABSTRACT

Gut microbiota richness and stability are important parameters in host-microbe symbiosis. Diet modification, notably using dietary fibres, might be a way to restore a high richness and stability in the gut microbiota. In this work, during a 6-week nutritional trial, 19 healthy adults consumed a basal diet supplemented with 10 or 40 g dietary fibre per day for 5 days, followed by 15-day washout periods. Fecal samples were analysed by a combination of 16S rRNA gene pyrosequencing, intestinal cell genotoxicity assay, metatranscriptomics sequencing approach and short-chain fatty analysis. This short-term change in the dietary fibre level did not have the same impact for all individuals but remained significant within each individual gut microbiota at genus level. Higher microbiota richness was associated with higher microbiota stability upon increased dietary fibre intake. Increasing fibre modulated the expression of numerous microbiota metabolic pathways such as glycan metabolism, with genes encoding carbohydrate-active enzymes active on fibre or host glycans. High microbial richness was also associated with high proportions of Prevotella and Coprococcus species and high levels of caproate and valerate. This study provides new insights on the role of gut microbial richness in healthy adults upon dietary changes and host microbes' interaction.


Subject(s)
Diet/methods , Dietary Fiber/administration & dosage , Fatty Acids/analysis , Feces/microbiology , Gastrointestinal Microbiome/genetics , Adult , Clostridiales/genetics , Clostridiales/isolation & purification , Dietary Supplements , Female , Humans , Male , Prevotella/genetics , Prevotella/isolation & purification , RNA, Ribosomal, 16S/genetics , Symbiosis , Young Adult
15.
J Struct Biol ; 190(2): 115-21, 2015 May.
Article in English | MEDLINE | ID: mdl-25727185

ABSTRACT

A new chitinase-like agglutinin, RobpsCRA, related to family GH18 chitinases, has previously been identified in black locust (Robinia pseudoacacia) bark. The crystal structure of RobpsCRA at 1.85Å resolution reveals unusual molecular determinants responsible for the lack of its ancestral chitinase activity. Unlike other chitinase-like proteins, which lack chitinase catalytic residues, RobpsCRA has conserved its catalytic machinery. However, concerted rearrangements of loop regions coupled to non-conservative substitutions of aromatic residues central to the chitin-binding groove explain the lack of hydrolytic activity against chitin and the switch toward recognition of high-mannose type N-glycans. Identification of close homologs in flowering plants with conservation of sequence motifs associated to the structural adaptations seen in RobpsCRA defines an emerging class of agglutinins, as emphasized by a phylogenetic analysis, that are likely to share a similar carbohydrate binding specificity for high-mannose type N-glycans. This study illustrates the recent evolution and molecular adaptation of a versatile TIM-barrel scaffold within the ancestral GH18 family.


Subject(s)
Agglutinins/analysis , Evolution, Molecular , Models, Molecular , Plant Bark/chemistry , Robinia/chemistry , Agglutinins/chemistry , Catalysis , Chitinases/analysis , Chromatography, Gel , Crystallization , Hydrolysis , Likelihood Functions , Models, Genetic , Phylogeny , Polysaccharides/metabolism , Protein Conformation
16.
J Proteome Res ; 11(12): 5924-33, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23075436

ABSTRACT

Four healthy adult cats were used in a crossover design to determine phylogeny and metabolic functional capacity of the cat's gastrointestinal microbiota using a metagenomic approach. Healthy adult cats (1.7 years old) were fed diets containing 4% cellulose, fructooligosaccharides (FOS), or pectin for 30 d, at which time fresh fecal samples were collected. Fecal DNA samples from each cat consuming each diet were subjected to 454 pyrosequencing. Dominant phyla determined using two independent databases (MG-RAST and IMG/M) included Firmicutes (mean=36.3 and 49.8%, respectively), Bacteroidetes (mean=36.1 and 24.1%, respectively), and Proteobacteria (mean=12.4 and 11.1%, respectively). Primary functional categories as determined by KEGG were associated with carbohydrates, clustering-based subsystems, protein metabolism, and amino acids and derivatives. Primary functional categories as determined by COG were associated with amino acid metabolism and transport, general function prediction only, and carbohydrate transport and metabolism. Analysis of carbohydrate-active enzymes revealed modifications in several glycoside hydrolases, glycosyl transferases, and carbohydrate-binding molecules with FOS and pectin consumption. While the cat is an obligate carnivore, its gut microbiome is similar regarding microbial phylogeny and gene content to omnivores.


Subject(s)
Dietary Fiber/administration & dosage , Gastrointestinal Tract/microbiology , Metagenome , Amino Acids/metabolism , Animals , Bacteroidetes/classification , Bacteroidetes/growth & development , Bacteroidetes/metabolism , Cats , Cellulose/metabolism , Cluster Analysis , Computational Biology/methods , Databases, Genetic , Dietary Fiber/metabolism , Feces/cytology , Feces/microbiology , Gastrointestinal Tract/metabolism , Male , Metabolomics/methods , Oligosaccharides/metabolism , Pectins/metabolism , Phylogeny , Proteobacteria/classification , Proteobacteria/growth & development , Proteobacteria/metabolism , Random Allocation , Time Factors
17.
BMC Genomics ; 13: 321, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22812459

ABSTRACT

BACKGROUND: Pectins are diverse and very complex biomolecules and their structure depends on the plant species and tissue. It was previously shown that derivatives of pectic polymers and oligosaccharides from pectins have positive effects on human health. To obtain specific pectic oligosaccharides, highly defined enzymatic mixes are required. Filamentous fungi are specialized in plant cell wall degradation and some produce a broad range of pectinases. They may therefore shed light on the enzyme mixes needed for partial hydrolysis. RESULTS: The growth profiles of 12 fungi on four pectins and four structural elements of pectins show that the presence/absence of pectinolytic genes in the fungal genome clearly correlates with their ability to degrade pectins. However, this correlation is less clear when we zoom in to the pectic structural elements. CONCLUSIONS: This study highlights the complexity of the mechanisms involved in fungal degradation of complex carbon sources such as pectins. Mining genomes and comparative genomics are promising first steps towards the production of specific pectinolytic fractions.


Subject(s)
Fungi/enzymology , Fungi/metabolism , Pectins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Fungi/growth & development , Genome, Fungal/genetics , Polygalacturonase/genetics , Polygalacturonase/metabolism , Trichoderma/enzymology , Trichoderma/genetics , Trichoderma/growth & development , Trichoderma/metabolism
18.
Nat Commun ; 3: 913, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22735441

ABSTRACT

Ganoderma lucidum is a widely used medicinal macrofungus in traditional Chinese medicine that creates a diverse set of bioactive compounds. Here we report its 43.3-Mb genome, encoding 16,113 predicted genes, obtained using next-generation sequencing and optical mapping approaches. The sequence analysis reveals an impressive array of genes encoding cytochrome P450s (CYPs), transporters and regulatory proteins that cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all of the sequenced basidiomycetes. In all, 24 physical CYP gene clusters are identified. Moreover, 78 CYP genes are coexpressed with lanosterol synthase, and 16 of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the G. lucidum genome makes this organism a potential model system for the study of secondary metabolic pathways and their regulation in medicinal fungi.


Subject(s)
Genome, Fungal/genetics , Reishi/genetics , Fungal Proteins/genetics , Reishi/metabolism
19.
PLoS Biol ; 9(12): e1001221, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22205877

ABSTRACT

Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats.


Subject(s)
Bacteroides/metabolism , Cell Wall/metabolism , Gastrointestinal Tract/microbiology , Plant Cells/metabolism , Polysaccharides/metabolism , Bacteroides/genetics , Bacteroides/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genetic Loci , Humans , Monosaccharides/metabolism , Oligonucleotide Array Sequence Analysis , Pectins/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL