Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Environ Qual ; 46(6): 1190-1197, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293859

ABSTRACT

Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ∼26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-µm × 45-µm area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (µ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the µ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the µ-XANES fits, and a fit to the sum of µ-XANES spectra included four of the standards. These results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.


Subject(s)
Phosphorus/analysis , Soil/chemistry , X-Ray Absorption Spectroscopy , Agriculture , Soil Pollutants
2.
J Environ Qual ; 45(6): 1988-1997, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27898793

ABSTRACT

The development of efficient fertilizers with a diminished environmental footprint will help meet the increasing demand for food and nutrients by a growing global population. Our objective was to evaluate whether an acidic mine waste (AMW) could be used beneficially by reacting it with sparingly soluble phosphate rocks (PRs) to produce more soluble P fertilizer materials. Three PRs from Brazil and Peru were reacted with different concentrations of AMW. Changes in mineralogy and P species were determined using a combination of X-ray diffraction and phosphorus K-edge XANES spectroscopy, in addition to extractable P concentrations. Increasing the AMW concentration typically increased extractable P. X-ray diffraction data showed transformation of apatite to other species when PRs were reacted with AMW at ≥50% (v/v) in water, with gypsum or anhydrite forming at AMW concentrations as low as 12.5%. Linear combination fitting analysis of X-ray absorption near edge structure spectra also indicated a progressive transformation of apatite to noncrystalline Fe(III)-phosphate and more soluble Ca-phosphates with increasing AMW concentration. Because this AMW is costly to dispose of, reacting it with PR to produce a higher-grade phosphate fertilizer material could decrease the environmental impacts of the AMW and diminish the consumption of pure acids in conventional P fertilizer production.


Subject(s)
Phosphates/chemistry , Waste Disposal, Fluid , Ferric Compounds , Fertilizers , Hydrogen-Ion Concentration , Phosphorus , Water
3.
Int J Phytoremediation ; 15(9): 844-60, 2013.
Article in English | MEDLINE | ID: mdl-23819280

ABSTRACT

Rhizoremediation of petroleum contaminants is a phytoremediation process that depends on interactions among plants, microbes, and soils. Trees and grasses are commonly used for phytoremediation, with trees typically being chosen for remediation of BTEX while grasses are more commonly used for remediation of PAHs and total petroleum hydrocarbons. The objective of this review was to compare the effectiveness of trees and grasses for rhizoremediation of hydrocarbons and address the advantages of each vegetation type. Grasses were more heavily represented in the literature and therefore demonstrated a wider range of effectiveness. However, the greater biomass and depth of tree roots may have greater potential for promoting environmental conditions that can improve rhizoremediation, such as increased metabolizable organic carbon, oxygen, and water. Overall, we found little difference between grasses and trees with respect to average reduction of hydrocarbons for studies that compared planted treatments with a control. Additional detailed investigations into plant attributes that most influence hydrocarbon degradation rates should provide data needed to determine the potential for rhizoremediation with trees or grasses for a given site and identify which plant characteristics are most important.


Subject(s)
Hydrocarbons/metabolism , Petroleum/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Trees/metabolism , Biodegradation, Environmental , Biomass , Plant Roots/metabolism , Rhizosphere , Soil , Soil Microbiology
4.
Environ Sci Technol ; 45(15): 6283-9, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21714572

ABSTRACT

Poorly crystalline minerals have high sorption capacities for environmentally important chemical species, but molecular-level mechanisms of sorption on complex mineral assemblages remain largely unknown. We determined the distribution of orthophosphate (PO(4)) bonding between Al and Fe in relation to structural properties of Al/Fe-hydroxide coprecipitates. Phosphate was sorbed at concentrations between 0.042 and 0.162 mol P mol(-1) Al+Fe on coprecipitates containing 0, 20, 50, 75, or 100 mol % of metal as Al. Phosphorus XANES analyses showed preferential bonding of PO(4) for Al on coprecipitates with 20 and 50 mol % Al, and no preference for either metal at 75 mol % Al, consistent with X-ray photoelectron spectroscopy (XPS) analyses of near-surface metal distributions. Structural ordering and the Fe-hydroxide domain size in coprecipitates decreased with increasing Al proportion, as shown by X-ray diffraction (XRD) and Fe EXAFS analyses. Structural interactions in coprecipitates imparted unique PO(4) sorption properties compared with isolated Al- or Fe-hydroxide.


Subject(s)
Aluminum/chemistry , Chemical Precipitation , Hydroxides/chemistry , Iron/chemistry , Phosphates/chemistry , Adsorption , Crystallization , Microscopy, Electron, Transmission , Phosphorus/analysis , Temperature , X-Ray Absorption Spectroscopy , X-Ray Diffraction
5.
J Environ Qual ; 40(3): 751-66, 2011.
Article in English | MEDLINE | ID: mdl-21546661

ABSTRACT

In the past decades, environmental scientists have become increasingly involved in developing novel approaches for applying emerging spectroscopic techniques to complex environmental matrices. The objective of this review is to convey the most common chemical species of phosphorus reported for soils, sediments, model systems, and waste materials based on analyses by four spectroscopic techniques: X-ray absorption near-edge structure, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Unique information is provided by each technique at a level of specificity that depends in part on matrix complexity. The X-ray absorption near-edge structure and nuclear magnetic resonance techniques reveal inorganic and organic P species in intact environmental matrices or in chemical extracts, whereas the Fourier transform infrared and Raman techniques can provide more specific bonding information about mineral or adsorbed P species in model analogs of matrix components. The most common P species in soils and sediments as indicated by spectroscopy are hydroxyapatite and octacalcium phosphate minerals, phosphate adsorbed on Fe- and Al-oxides, pyrophosphates and polyphosphates, phosphate mono- and di-esters, and phosphonates. Continued advancements in spectroscopic methods should improve speciation-based models of P mobilization and transformations in the environment.


Subject(s)
Environmental Monitoring/methods , Magnetic Resonance Spectroscopy/methods , Phosphorus/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , X-Ray Absorption Spectroscopy/methods , Computer Simulation , Environmental Monitoring/instrumentation , Geologic Sediments/analysis , Magnetic Resonance Spectroscopy/instrumentation , Phosphorus/analysis , Phosphorus Compounds/analysis , Phosphorus Compounds/chemistry , Soil/analysis , Soil/chemistry , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectrum Analysis, Raman/instrumentation , Waste Products/analysis , X-Ray Absorption Spectroscopy/instrumentation
6.
Environ Sci Technol ; 43(17): 6515-21, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19764210

ABSTRACT

X-ray absorption near edge structure (XANES) spectroscopy is a useful technique for characterization of chemical species of phosphorus in complex environmental samples. To develop and evaluate bed filters as sustainable on-site wastewater treatment solutions, our objective in this study was to determine the chemical forms of accumulated phosphorus in a selection of promising filter materials: Filtralite P, Filtra P, Polonite, Absol, blast furnace slag, and wollastonite. Full-scale operational wastewater-treatment systems were sampled and in addition, filter samples collected from laboratory studies provided access to additional media and complementary samples. Phosphorus species were characterized using phosphorus K-edge XANES spectroscopy, complemented by X-ray powder diffraction (XRPD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). No systematic differences could be seen in the results between laboratory- and full-scale samples. All six filter media contained significant amounts of crystalline calcium phosphates. Some samples also contained amorphous calcium phosphate (>60% of total P in Absol). In Filtralite P and blast furnace slag, more than 35% of the accumulated phosphorus was associated with Fe or Al. Both the power and shortcomings of XANES analysis for characterizing P species in these filter media are discussed.


Subject(s)
Filtration , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Filtration/instrumentation , Reference Standards , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis/methods , X-Ray Diffraction , X-Rays
7.
J Environ Qual ; 38(3): 1053-65, 2009.
Article in English | MEDLINE | ID: mdl-19329693

ABSTRACT

In addition to nutrients, poultry are fed trace elements (e.g., As) for therapeutic purposes. Although a large proportion of the nutrients are assimilated by the birds, nearly all of the As is excreted. Hence, turkey litter constituents can leach into the soil and contaminate shallow ground water when it is stockpiled uncovered on bare soil. This study quantified the leaching of turkey litter constituents from uncovered stockpiles into the underlying soil. Four stockpiles were placed on Orangeburg loamy sand in summer 2004 for 162 d; 14 d after their removal, four stockpiles were created over the same footprints and left over winter for 162 d. Soil samples at depths of 7.6 to 30.5 cm and 30.5 to 61 cm adjacent to and beneath the stockpiles were compared for pH, electrical conductivity, total C, dissolved organic C, N species, P, water-extractable (WE)-P, As, WE-As, Cu, Mn, and Zn. All WE constituents affected the 7.6- to 30.5-cm layer, and some leached deeper; for example, NH(4)(+)-N concentrations were 184 and 62 times higher in the shallow and deep layers, respectively. During winter stockpiling, WE-As concentrations beneath the stockpiles tripled and doubled in the 7.6- to 30.5-cm and 30.5- to 61-cm layers, respectively, with WE-As being primarily as As(V). Heavy dissolved organic C and WE-P leaching likely increased solubilization of soil As, although WE-As concentrations were low due to the Al-rich soil and low-As litter. When used as drinking water, shallow ground water should be monitored on farms with a history of litter stockpiling on bare soil; high litter As; and high soil As, Fe, and Mn concentrations.


Subject(s)
Arsenic/analysis , Manure , Metals/analysis , Soil Pollutants/analysis , Water Pollution, Chemical/analysis , Animals , Electric Conductivity , Hydrogen-Ion Concentration , Nitrogen Compounds/analysis , Organic Chemicals/analysis , Phosphorus/analysis , Soil/analysis , Temperature , Turkey , Water/analysis
8.
J Environ Qual ; 35(6): 1983-93, 2006.
Article in English | MEDLINE | ID: mdl-17071866

ABSTRACT

Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO(4) sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO(4) sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO(4) sorbed on ferrihydrite, hydroxylapatite, beta-tricalcium phosphate (beta-TCP), and often PO(4) sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO(4) sorbed to Al hydroxides and NH(4)Cl- + NH(4)F-extractable P, XANES PO(4) sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + beta-TCP and dithionite-citrate-bicarbonate (DCB)- + H(2)SO(4)-extractable P (r(2) = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.


Subject(s)
Manure/analysis , Phosphorus/analysis , Phosphorus/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Absorption , Ammonium Chloride/chemistry , Ammonium Compounds , Animals , Bicarbonates/chemistry , Calcium Compounds/chemistry , Citrates/chemistry , Clinical Laboratory Techniques , Durapatite/chemistry , Ferric Compounds/chemistry , Fluorides/chemistry , Hydroxides/chemistry , Oxides/chemistry , Phosphates/analysis , Phosphates/chemistry , Phytic Acid/chemistry , Quaternary Ammonium Compounds/chemistry , Spectrometry, X-Ray Emission , Sulfuric Acids/chemistry
9.
Environ Sci Technol ; 39(7): 2152-60, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871250

ABSTRACT

Phosphate sorption on Fe- and Al-oxide minerals helps regulate the solubility and mobility of P in the environment. The objective of this study was to characterize phosphate adsorption and precipitation in single and binary systems of Fe- and Al-oxide minerals. Varying concentrations of phosphate were reacted for 42 h in aqueous suspensions containing goethite, ferrihydrite, boehmite, or noncrystalline (non-xl) Al-hydroxide, and in 1:1 (by mass) mixed-mineral suspensions of goethite/boehmite and ferrihydrite/ non-xl Al-hydroxide at pH 6 and 22 degrees C. X-ray absorption near edge structure (XANES) spectroscopy was used to detect precipitated phosphate and distinguish PO4 associated with Fe(III) versus Al(III) in mixed-mineral systems. Changes in the full width at half-maximum height (fwhm) in the white-line peak in P K-XANES spectra provided evidence for precipitation in Al-oxide single-mineral systems, but not in goethite or ferrihydrite systems. Similarly, adsorption isotherms and XANES data showed evidence for precipitation in goethite/boehmite mixtures, suggesting that mineral interactive effects on PO4 sorption were minimal. However, sorption in ferrihydrite/non-xl Al-hydroxide systems and a lack of XANES evidence for precipitation indicated that mineral interactions inhibited precipitation in these binary mixtures.


Subject(s)
Aluminum Oxide/chemistry , Ferritins/chemistry , Iron Compounds/chemistry , Phosphates/chemistry , Spectrum Analysis/methods , Adsorption , Chemical Precipitation , Ferric Compounds , Minerals , X-Rays
10.
J Environ Qual ; 33(5): 1793-802, 2004.
Article in English | MEDLINE | ID: mdl-15356240

ABSTRACT

Phosphorus dissolution often increases as soils become more reduced, but the mechanisms are not fully understood. The objectives of this research were to determine rates and mechanisms of P dissolution during microbial reduction of a surface soil from the North Carolina Coastal Plain. Duplicate suspensions of silt + clay fractions from a Cape Fear sandy clay loam (fine, mixed, semiactive, thermic Typic Umbraquult) were reduced in a continuously stirred redox reactor for 40 d. We studied the effects of three treatments on P dissolution: (i) 2 g dextrose kg(-1) solids added as a microbial carbon source at time 0 d; (ii) 2 g dextrose kg(-1) solids split into three additions at 0, 12, and 26 d; and (iii) no added dextrose. After 40 d of reduction, concentrations of dissolved reactive phosphorus (DRP) were similar for all treatments and increased up to sevenfold from 1.5 to 10 mg L(-1). The initial rate of reduction and dissolution of DRP was significantly greater for the 0-d treatment. A linear relationship (R(2) = 0.79) was found between DRP and dissolved organic carbon (DOC). Dissolved Fe and Al and pH increased, suggesting the formation of aqueous Fe- and Al-organic matter complexes. Separate batch experiments were performed to study the effects of increasing pH and citrate additions on PO(4) dissolution under aerobic conditions. Increasing additions of citrate increased concentrations of DRP, Fe, and Al, while increasing pH had no effect. Results indicated that increased dissolved organic matter (DOM) during soil reduction contributed to the increase in DRP, perhaps by competitive adsorption or formation of aqueous ternary DOM-Fe-PO(4) or DOM-Al-PO(4) complexes.


Subject(s)
Phosphorus/chemistry , Soil Microbiology , Adsorption , Aluminum Silicates , Clay , Organic Chemicals , Phosphates/chemistry , Solubility
11.
J Environ Qual ; 32(5): 1809-19, 2003.
Article in English | MEDLINE | ID: mdl-14535324

ABSTRACT

Knowledge of phosphorus (P) species in P-rich soils is useful for assessing P mobility and potential transfer to ground water and surface waters. Soil P was studied using synchrotron X-ray absorption near-edge structure (XANES) spectroscopy (a nondestructive chemical-speciation technique) and sequential chemical fractionation. The objective was to determine the chemical speciation of P in long-term-fertilized, P-rich soils differing in pH, clay, and organic matter contents. Samples of three slightly acidic (pH 5.5-6.2) and two slightly alkaline (pH 7.4-7.6) soils were collected from A or B horizons in two distinct agrosystems in the province of Québec, Canada. The soils contained between 800 and 2100 mg total P kg(-1). Distinct XANES features for Ca-phosphate mineral standards and for standards of adsorbed phosphate made it possible to differentiate these forms of P in the soil samples. The XANES results indicated that phosphate adsorbed on Fe- or Al-oxide minerals was present in all soils, with a higher proportion in acidic than in slightly alkaline samples. Calcium phosphate also occurred in all soils, regardless of pH. In agreement with chemical fractionation results, XANES data showed that Ca-phosphates were the dominant P forms in one acidic (pH 5.5) and in the two slightly alkaline (pH 7.4-7.6) soil samples. X-ray absorption near-edge structure spectroscopy directly identified certain forms of soil P, while chemical fractionation provided indirect supporting data and gave insights on additional forms of P such as organic pools that were not accounted for by the XANES analyses.


Subject(s)
Agriculture , Phosphorus/analysis , Phosphorus/chemistry , Soil , Adsorption , Chemistry Techniques, Analytical/methods , Environmental Monitoring/methods , Phosphates/analysis , Phosphates/chemistry , Spectrometry, X-Ray Emission
12.
Bioresour Technol ; 89(3): 229-36, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12798112

ABSTRACT

Because of increased concern about surface water eutrophication from nutrient-enriched agricultural runoff, many swine producers are encouraged to decrease application rates of waste-based P. Precipitation and subsequent removal of magnesium ammonium phosphate (MgNH(4)PO(4) x 6H(2)O), commonly known as struvite, is a promising mechanism for N and P removal from anaerobic swine lagoon effluent. The objectives of this research were to (i) quantify the effects of adjusting pH and Mg:P ratio on struvite precipitation and (ii) determine the rate constant pH effect for struvite precipitation in anaerobic swine lagoon liquid. Concentrations of PO(4)-P in liquid from two anaerobic swine lagoons were determined after 24 h of equilibration for a pH range of 7.5-9.5 and Mg:P ratios between 1:1 and 1.6:1. Struvite formation reduced the PO(4)-P concentration in the effluents to as low as 2 mgl(-1). Minimum concentrations of PO(4)-P occurred between pH 8.9 and 9.25 at all Mg:P ratios. Struvite precipitation decreased PO(4)-P concentrations by 85% within 20 min at pH 9.0 for an initial Mg:P ratio of 1.2:1. The rate of PO(4)-P decrease was described by a first-order kinetic model, with rate constants of 3.7, 7.9, and 12.3 h(-1) at pH 8.4, 8.7 and 9.0 respectively. Our results indicate that induced struvite formation is a technically feasible method to remove N and P from swine lagoon liquid and it may allow swine producers to recover nutrients for off-farm sale.


Subject(s)
Magnesium Compounds/chemistry , Magnesium/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Swine , Waste Management/methods , Water/chemistry , Anaerobiosis , Animals , Chemical Precipitation , Hydrogen-Ion Concentration , Kinetics , Magnesium/analysis , Phosphorus/analysis , Struvite
SELECTION OF CITATIONS
SEARCH DETAIL