Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
BMC Gastroenterol ; 14: 68, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24712338

ABSTRACT

BACKGROUND: Therapeutic gene transfer is currently being evaluated as a potential therapy for inflammatory bowel disease. This study investigates the safety and therapeutic benefit of a locally administered lentiviral vector encoding murine interleukin-10 in altering the onset and relapse of dextran sodium sulfate induced murine colitis. METHODS: Lentiviral vectors encoding the reporter genes firefly-luciferase and murine interleukin-10 were administered by intrarectal instillation, either once or twice following an ethanol enema to facilitate mucosal uptake, on Days 3 and 20 in Balb/c mice with acute and relapsing colitis induced with dextran sulfate sodium (DSS). DSS colitis was characterized using clinical disease activity, macroscopic, and microscopic scores. Bioluminescence optical imaging analysis was employed to examine mucosal lentiviral vector uptake and transgene expression. Levels of tumor necrosis factor-α and interleukin-6 in homogenates of rectal tissue were measured by ELISA. Biodistribution of the lentiviral vector to other organs was evaluated by real time quantitative PCR. RESULTS: Mucosal delivery of lentiviral vector resulted in significant transduction of colorectal mucosa, as shown by bioluminescence imaging analysis. Lentiviral vector-mediated local expression of interleukin-10 resulted in significantly increased levels of this cytokine, as well as reduced levels of tumor necrosis factor-α and interleukin-6, and significantly reduced the clinical disease activity, macroscopic, and microscopic scores of DSS colitis. Systemic biodistribution of locally instilled lentiviral vector to other organs was not detected. CONCLUSIONS: Topically-delivered lentiviral vectors encoding interleukin-10 safely penetrated local mucosal tissue and had therapeutic benefit in this DSS model of murine colitis.


Subject(s)
Colitis/therapy , Genetic Therapy/methods , Genetic Vectors , Interleukin-10/genetics , Lentivirus , Administration, Mucosal , Administration, Rectal , Animals , Colitis/chemically induced , Colitis/prevention & control , Dextran Sulfate/toxicity , Disease Models, Animal , Gene Transfer Techniques , Mice , Mice, Inbred BALB C , Recurrence
2.
Mol Ther ; 20(9): 1689-98, 2012 09.
Article in English | MEDLINE | ID: mdl-22547150

ABSTRACT

Retroviral replicating vectors (RRVs) are a nonlytic alternative to oncolytic replicating viruses as anticancer agents, being selective both for dividing cells and for cells that have defects in innate immunity and interferon responsiveness. Tumor cells fit both these descriptions. Previous publications have described a prototype based on an amphotropic murine leukemia virus (MLV), encoding yeast cytosine deaminase (CD) that converts the prodrug 5-fluorocytosine (5-FC) to the potent anticancer drug, 5-fluorouracil (5-FU) in an infected tumor. We report here the selection of one lead clinical candidate based on a general design goal to optimize the genetic stability of the virus and the CD activity produced by the delivered transgene. Vectors were tested for titer, genetic stability, CD protein and enzyme activity, ability to confer susceptibility to 5-FC, and preliminary in vivo antitumor activity and stability. One vector, Toca 511, (aka T5.0002) encoding an optimized CD, shows a threefold increased specific activity in infected cells over infection with the prototype RRV and shows markedly higher genetic stability. Animal testing demonstrated that Toca 511 replicates stably in human tumor xenografts and, after 5-FC administration, causes complete regression of such xenografts. Toca 511 (vocimagene amiretrorepvec) has been taken forward to preclinical and clinical trials.


Subject(s)
Genetic Therapy/methods , Leukemia Virus, Murine/genetics , Neoplasms, Experimental/therapy , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Flucytosine/metabolism , Flucytosine/pharmacology , Fluorouracil/metabolism , Fluorouracil/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Genetic Vectors , Humans , Mice , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Prodrugs/metabolism , Prodrugs/pharmacology , RNA Stability , Rats , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL