Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Mol Cell Endocrinol ; 499: 110615, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31628964

ABSTRACT

Chronic high-fat diet (HFD) consumption causes ovarian dysfunction in rodents. Acute dietary treatment with docosahexaenoic acid (DHA) increases oocyte quality and ovarian reserve at advanced reproductive age. We hypothesized that DHA supplementation after HFD exposure reverses HFD-induced ovarian defects. We conducted a dietary intervention with reversal to chow, DHA-supplemented chow, or DHA-supplemented HFD after HFD consumption. After 10 weeks, HFD-fed mice had impaired estrous cyclicity, decreased primordial follicles, and altered ovarian expression of 24 genes compared to chow controls. Diet reversal to either chow or chow + DHA restored estrous cyclicity, however only chow + DHA appeared to mitigated the impact of HFD on ovarian reserve. All dietary interventions restored HFD-dysregulated gene expression to chow levels. We found no association between follicular fluid DHA levels and ovarian reserve. In conclusion our data suggest some benefit of DHA supplementation after HFD, particularly in regards to ovarian gene expression, however complete restoration of ovarian function was not achieved.


Subject(s)
Diet, High-Fat/adverse effects , Docosahexaenoic Acids/administration & dosage , Estrous Cycle/drug effects , Gene Regulatory Networks/drug effects , Ovary/drug effects , Animals , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Fatty Acids/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Humans , Mice , Ovary/chemistry
2.
J Med Food ; 21(10): 1044-1052, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29792544

ABSTRACT

Menopause induces a loss of bone as a result of estrogen deficiency. Despite pharmaceutical options for the treatment of osteopenia and osteoporosis, many aging women use dietary supplements with estrogenic activity to prevent bone loss and other menopausal-related symptoms. Such supplements are yet to be tested for efficacy against a Food and Drug Administration (FDA) approved medication for menopausal bone loss such as zoledronic acid (ZA). The postmenopausal rat model was used to investigate the efficacy of various synergistic phytochemical blends mixed into the diet for 16 weeks. Retired-breeder, Fischer 344 rats were randomly assigned to sham or ovariectomy surgery and 4 treatment groups: ZA; genistein supplementation; and a low dose and high dose blend of genistein, resveratrol, and quercetin. Ovariectomy resulted in a loss of both trabecular and cortical bone which was prevented with ZA. The phytochemical blends tested were unable to reverse these losses. Despite the lack of effectiveness in preventing bone loss, a significant dose-response trend was observed in the phytochemical-rich diets in bone adipocyte number compared to ovariectomized control rats. Data from this study indicate that estrogenic phytochemicals are not as efficacious as ZA in preventing menopausal-related bone loss but may have beneficial effects on bone marrow adiposity in rats.


Subject(s)
Osteoporosis, Postmenopausal/drug therapy , Phytochemicals/administration & dosage , Adiposity/drug effects , Animals , Bone Density/drug effects , Drug Synergism , Drug Therapy, Combination , Female , Genistein/administration & dosage , Humans , Osteoporosis, Postmenopausal/etiology , Osteoporosis, Postmenopausal/physiopathology , Ovariectomy/adverse effects , Quercetin/administration & dosage , Rats , Rats, Inbred F344 , Resveratrol/administration & dosage
3.
Obes Res Clin Pract ; 11(6): 665-676, 2017.
Article in English | MEDLINE | ID: mdl-28733112

ABSTRACT

BACKGROUND/OBJECTIVES: Obesity and maternal folate deficiency are associated with increased risk for neural tube defects (NTDs). Limited knowledge exists on the impact of folate status or obesity on DNA methylation of genes related to NTD risk and folate metabolism. SUBJECTS/METHODS: Women (18-35y) with normal weight (NW; BMI 18.5-24.9kg/m2; n=12) and obesity (OB; BMI >30kg/m2; n=6) were provided FA (800µg/d) for 8-weeks. Serum folate concentration and changes in DNA methylation across 2098 CpG sites in 91 genes related to NTD risk and folate metabolism were examined. RESULTS: Serum folate concentration increased in both groups following FA supplementation, but OB maintained a relative lower concentration (NW; 38.36±2.50-71.41±3.02nmol/L and OB; 27.12±3.09-56.85±3.90nmol/L). Methylation of 56 and 99 CpG sites changed in response to supplementation in NW and OB, respectively, and majority of these sites decreased in methylation in both groups. Only 4 CpG sites responded to supplementation in both groups. Gene ontology analysis revealed a response to supplementation in 61 biological processes (BPs) from the selected genes. Five of the 61 BPs were identified only in NW, including neural tube closure, while 13 of the 61 BPs were enriched only in OB, including folate metabolism, vitamin B12 metabolism and methylation related processes. CONCLUSIONS: Changes in DNA methylation in genes related to NTD risk and folate metabolism in response to FA supplementation were different in NW and OB. Increased NTD risk and abnormal folate metabolism in obesity may be due to a distinctive epigenetic response to folate status in these genes.


Subject(s)
DNA Methylation/drug effects , Dietary Supplements , Folic Acid/administration & dosage , Obesity/genetics , Adolescent , Adult , Female , Folic Acid/blood , Humans , Obesity/blood , Pilot Projects , Young Adult
4.
Int J Vitam Nutr Res ; 87(5-6): 271-278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30499755

ABSTRACT

Folate, a water-soluble vitamin, is a key source of one-carbon groups for DNA methylation, but studies of the DNA methylation response to supplemental folic acid yield inconsistent results. These studies are commonly conducted using whole blood, which contains a mixed population of white blood cells that have been shown to confound results. The objective of this study was to determine if CD16+ neutrophils may provide more specific data than whole blood for identifying DNA methylation response to chronic folic acid supplementation. The study was performed in normal weight (BMI 18.5 - 24.9 kg/m2) women (18 - 35 y; n = 12), with blood samples taken before and after 8 weeks of folic acid supplementation at 800 µg/day. DNA methylation patterns from whole blood and isolated CD16+ neutrophils were measured across >485,000 CpG sites throughout the genome using the Infinium HumanMethylation450 BeadChip. Over the course of the 8-week supplementation, 6746 and 7513 CpG sites changed (p < 0.05) in whole blood and CD16+ neutrophils, respectively. DNA methylation decreased in 68.4% (whole blood) and 71.8% (CD16+ neutrophils) of these sites. There were only 182 CpG sites that changed in both the whole blood and CD16+ neutrophils, 139 of which changed in the same direction. These results suggest that the genome-wide DNA methylation response to chronic folic acid supplementation is different between whole blood and CD16+ neutrophils and that a single white blood cell type may function as a more specific epigenetic reporter of folate status than whole blood.

SELECTION OF CITATIONS
SEARCH DETAIL