Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Phytomedicine ; 105: 154338, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35921773

ABSTRACT

BACKGROUND: Callerya atropurpurea is a traditional plant in a tropical zone discovered to have anti-inflammatory functions. PURPOSE: we want to investigate the mechanism related to anti-inflammation of C. atropurpurea ethanol extract (Ca-EE) both in vitro and in vivo. STUDY DESIGN: Murine macrophage cells and mouse models for gastritis and septic shock were conducted to evaluate the abilities of Ca-EE in anti-inflammation. METHODS: Ca-EE was tested by HPLC and LC-MS/MS. NO outcome was checked by Griess reagent test. Cell viabilities were evaluated using MTT assay. Inflammatory cytokines were determined via RT-PCR and ELISA. The mechanism of Ca-EE in anti-inflammation was investigated by luciferase reporter gene assay and immunoblot in transcription level and protein level respectively. Gastric injury and septic shock administrated with Ca-EE were studied by H&E, PCR, and immunoblot. RESULTS: Ca-EE significantly decreased LPS-induced NO production, but hardly stimulated the expression of NO itself. It not only showed no cytotoxicity, but also protected cells from LPS damage. Moreover, Ca-EE decreased TLR4 expression, altered MyD88 recruitment and TRAF6, and suppressed the phospho-Src/PI3K/AKT. Ca-EE inhibited downstream signaling P38, JNK and NF-κB. Finally, Ca-EE alleviated HCl/EtOH-induced gastritis and LPS/poly (I:C)-induced septic shock through the previously mentioned signaling cascades. CONCLUSION: Ca-EE exhibited an integrated and promising mechanism against TLR4-related inflammation, which shows potential for treating gastritis, septic shock, and other inflammatory diseases.


Subject(s)
Fabaceae , Gastritis , Shock, Septic , Animals , Anti-Inflammatory Agents , Chromatography, Liquid , Ethanol , Inflammation , Lipopolysaccharides , Mice , Myeloid Differentiation Factor 88 , NF-kappa B , Phosphatidylinositol 3-Kinases , Plant Extracts , Tandem Mass Spectrometry , Toll-Like Receptor 4
2.
BMC Complement Med Ther ; 22(1): 222, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35996139

ABSTRACT

BACKGROUND: Morinda citrifolia (Noni) is a plant that has long been used in various products such as foods and cosmetics. Although noni has been known to have immunostimulatory activity, detailed mechanism at the cellular level has not been fully elucidated yet. In this study, we focused on understanding as to how noni fruit can positively stimulate body's immune responses. METHODS: To do this, an ethanol extract of noni fruit (Mc-fEE) was prepared and administered for 30 days to male C57BL/6 mice for in vivo experiment. NK cell activity and cytokine production level from Mc-fEE-treated mice were analyzed by flowcytometry, real-time PCR, and ELISA. Mc-fEE-triggered molecular events were detected from RAW264.7 cells and splenocytes using Western blotting and real-time PCR analyses. RESULTS: The mRNA expression levels of cytokines such as interleukin families, interferon (IFN)-ß, and tumor necrosis factor (TNF)-α were increased by Mc-fEE treatment in vitro and in vivo. Western blotting analysis showed that the phosphorylation levels of nuclear factor (NF)-κB and activator protein (AP)-1 subunits these were enhanced in Mc-fEE-treated RAW264.7 cells. In addition, according to in vivo experiments, it was considered that Mc-fEE can increase the population of splenic NK cells and subsequent upregulation of their cytotoxic activity against YAC-1 cells, a T- cell lymphoma. CONCLUSION: In this paper, we could confirm that Mc-fEE has remarkable immunostimulatory effects by activation and increase of the NK cell population.


Subject(s)
Antineoplastic Agents , Morinda , Animals , Antineoplastic Agents/pharmacology , Ethanol , Fruit , Killer Cells, Natural , Mice , Mice, Inbred C57BL , NF-kappa B , Plant Extracts/pharmacology
3.
Phytomedicine ; 93: 153778, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628239

ABSTRACT

BACKGROUND: Cocculus hirsutus (L.) W. Thedo., a traditionally well-known plant, has confirmed antitumor properties as well as acute and chronic diuretic effects. However, little is known about its inflammatory activities and the potential effect on inflammatory disease treatment. PURPOSE: Our aim in this study was to explore additional beneficial properties of C. hirsutus ethanol extract (Ch-EE) such as anti-inflammatory activity in vitro and in vivo as well as its underlying mechanisms and to provide a theoretical basis for its role as a candidate natural drug in clinical gastritis and lung disease therapy. STUDY DESIGN: RAW264.7 cells, HEK293T cells, peritoneal macrophages, and mouse models of acute gastritis and acute lung injury were used to assess the anti-inflammatory activity of Ch-EE. METHODS: Decreases in LPS-induced nitric oxide (NO) production and cytokine expression by RAW264.7 cells after Ch-EE treatment were evaluated by Griess assays and PCR, respectively. Transcription factor activity was assessed through luciferase reporter gene assay, and protein expression was determined by Western blotting analysis. Overexpression assays and cellular thermal shift assays were executed in HEK293T cells. Our two in vivo models were an HCl/EtOH-induced gastritis model and an LPS-induced lung injury model. Changes in stomach lesions, lung edema, and lung histology were examined upon treatment with Ch-EE. Components of Ch-EE were determined by liquid chromatography-mass spectrometry. RESULTS: LPS-induced nitric oxide production and Pam3CSK4- and L-NAME-induced NO production were inhibited by Ch-EE treatment of RAW264.7 cells. Furthermore, LPS-induced increases in transcript levels of iNOS, COX2, CCL12, and IL-1ß were reduced by Ch-EE treatment. Ch-EE decreased both MyD88- and TRIF-induced NF-κB promotor activity. Proteins upstream of NF-κB, namely p-p50, p-p65, p-IκBα, p-AKT1, p-Src, and p-Syk, were all downregulated by Ch-EE. Moreover, Src and Syk were targets of Ch-EE. Ch-EE treatment reduced the size of inflammatory stomach lesions induced by HCl/EtOH, lung edema, and accumulation of activated neutrophils caused by LPS. CONCLUSIONS: These results strongly suggest that Cocculus hirsutus can be developed as a promising anti-inflammatory remedy with Src- and Syk-inhibitory functions targeting diseases related to gastritis and lung injury.


Subject(s)
Acute Lung Injury , Cocculus , Acute Lung Injury/drug therapy , Animals , HEK293 Cells , Humans , Lipopolysaccharides , Mice , Mice, Inbred ICR , NF-kappa B , Nitric Oxide , Plant Extracts/pharmacology , RAW 264.7 Cells , Stomach , Syk Kinase , src-Family Kinases
4.
Molecules ; 26(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34641616

ABSTRACT

Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/administration & dosage , Cissus/chemistry , Ethanol/adverse effects , Gastritis/drug therapy , Hydrochloric Acid/adverse effects , Lipopolysaccharides/adverse effects , Macrophages/cytology , Polyphenols/administration & dosage , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Administration, Oral , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Gastritis/chemically induced , Gastritis/genetics , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Plant Extracts/chemistry , Polyphenols/chemistry , RAW 264.7 Cells , Signal Transduction/drug effects , Treatment Outcome , src-Family Kinases/genetics
5.
J Ethnopharmacol ; 271: 113887, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33539951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1ß, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1ß and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Plant Extracts/pharmacology , Rutaceae/chemistry , Syk Kinase/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/genetics , Dinoprostone/metabolism , Disease Models, Animal , Ethanol/toxicity , Gastritis/chemically induced , Gastritis/drug therapy , Gastritis/pathology , HEK293 Cells , Humans , Hydrochloric Acid/toxicity , Inflammation/genetics , Interleukin-1beta/genetics , Lipopolysaccharides/toxicity , Male , Methanol/chemistry , Mice , Mice, Inbred ICR , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Plant Extracts/chemistry , Plant Extracts/therapeutic use , RAW 264.7 Cells , Signal Transduction/drug effects
6.
Pharm Biol ; 59(1): 74-86, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33439064

ABSTRACT

CONTEXT: Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE: This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS: The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS: Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS: This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Delivery Systems/methods , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Plant Extracts/therapeutic use , Syk Kinase/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Ethanol/pharmacology , Ethanol/therapeutic use , Gastritis/drug therapy , Gastritis/metabolism , HEK293 Cells , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Peritonitis/drug therapy , Peritonitis/metabolism , Plant Components, Aerial , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells , Syk Kinase/metabolism , src-Family Kinases/metabolism
7.
J Ethnopharmacol ; 268: 113602, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33246116

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY: In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS: To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS: The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION: Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Freund's Adjuvant/toxicity , Lipopolysaccharides/toxicity , Olea , Plant Extracts/therapeutic use , Animals , Anti-Inflammatory Agents/isolation & purification , Arthritis, Experimental/metabolism , Dose-Response Relationship, Drug , Male , Mice , Plant Extracts/isolation & purification , Plant Leaves , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Tunisia
8.
Am J Chin Med ; 48(8): 1895-1913, 2020.
Article in English | MEDLINE | ID: mdl-33308098

ABSTRACT

Olea europaea is a beneficial edible plant with a number of biological activities like anti-inflammatory, anti-oxidant, antithrombic, antihyperglycemic, and anti-ischemic activities. The mechanisms behind the antiphotoaging and anti-inflammatory effects of Olea europaea are not fully understood. To investigate how an ethanol extract of Olea europaea (Oe-EE) exerts these effects, we explored its activities in human keratinocytes and dermal fibroblasts. We assessed the anti-oxidant effects of Oe-EE via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2[Formula: see text]-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays and measured the expression levels of matrix metalloproteinases (MMPs), cyclooxygenase-2, interleukin (IL)-6, tumor necrosis factor (TNF)-[Formula: see text], and moisturizing factors. Antiphotoaging and anti-inflammatory mechanisms of Oe-EE were explored by assessing signaling molecule activation via immunoblotting. Oe-EE treatment decreased the mRNA expression level of MMPs, cyclooxygenase-2, IL-6, and TNF-[Formula: see text] and restored type I collagen, filaggrin, and sirtuin 1 expression in UVB-irradiated cells. Furthermore, Oe-EE inhibited the activities of several activator protein 1 regulatory enzymes, including extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), and inhibited nuclear factor (NF)-[Formula: see text]B pathway signaling proteins. Therefore, our results indicate that Oe-EE has photoaging-protective and anti-inflammatory effects.


Subject(s)
Anti-Inflammatory Agents , NF-kappa B/metabolism , Olea/chemistry , Plant Extracts/pharmacology , Radiation-Protective Agents , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factor AP-1/metabolism , Antioxidants , Dermis/cytology , Fibroblasts/metabolism , Filaggrin Proteins , HaCaT Cells , Humans , Keratinocytes/metabolism , Plant Extracts/isolation & purification , Ultraviolet Rays/adverse effects
9.
Article in English | MEDLINE | ID: mdl-32328122

ABSTRACT

Ultraviolet B (UVB) radiation is the main cause of photoaging processes including cellular senescence, skin drying, collagen degradation, melanogenesis, and inflammation. These responses occur because UVB induces a change in expression of aging-related genes through regulation of signal pathways such as that of mitogen-activated protein kinases- (MAPKs-) activator protein 1 (AP-1). Ranunculus bulumei, which is used as an herb in Indonesia, belongs to the Ranunculaceae family, which has been reported to perform various physiological effects including antioxidant and anti-inflammation. However, data on the pharmaceutical and cosmeceutical utility of Ranunculus bulumei have not been reported. Therefore, we evaluated the antiaging efficacy of RB-ME, a methanol extract of Ranunculus bulumei. Rb-ME attenuated MMP9 and COX-2 gene expression but enhanced SIRT1 and type-1 collagen in UVB-irradiated HaCaT cells. Rb-ME regulated these gene expressions through inhibition of p38 phosphorylation and inactivation of AP-1. In addition, mRNA expression of HAS-2 and -3, which are involved in skin hydration, was elevated in Rb-ME-treated HaCaT cells. Rb-ME also inhibited melanogenesis by suppression of tyrosinase, MITF, and TYRP-1 mRNA in B16F10 cells under α-MSH treatment. Taken together, these results indicate that Rb-ME has a protective effect on some UVB-induced skin photoaging events such as inflammation, collagen degradation, cellular senescence, skin drying, and melanin production through inhibition of the p38-AP-1 signal cascade, indicating that Rb-ME can be used as an active ingredient for antiaging cosmetics.

10.
Biomolecules ; 10(4)2020 04 03.
Article in English | MEDLINE | ID: mdl-32260181

ABSTRACT

(1) Background: Ranunculus bulumei is a flowering plant that belongs to the Ranunculus species. Several Ranunculus species, such as R. aquatilis and R. muricatus, have traditionally been used to treat fever and rheumatism throughout Asia, suggesting that plants belonging to the Ranunculus species may have anti-inflammatory effects. To our knowledge, the pharmacological activity of R. bulumei has not been reported. Therefore, in this study, we aim to assess the anti-inflammatory activity of a methanol extract that was derived from R. bulumei (Rb-ME) in macrophage-mediated inflammatory responses and to identify the molecular mechanism that underlies any anti-inflammatory action. (2) Methods: The anti-inflammatory efficacy of Rb-ME was evaluated while using in vitro and in vivo experiments. The RAW264.7 cells and peritoneal macrophages were stimulated by lipopolysaccharide (LPS). In addition, LPS-induced peritonitis and HCl/EtOH-triggered gastritis models were produced. A nitric oxide (NO) assay, real-time PCR, luciferase reporter gene assay, western blot analysis, plasmid overexpression strategy, and in vitro kinase assay were used to determine the molecular mechanisms and target molecules of Rb-ME. The phytochemical active ingredients of Rb-ME were also identified by high performance liquid chromatograph (HPLC). (3) Results: Rb-ME reduced the production of NO and mRNA expression of iNOS, COX-2, IL-1ß, and IL-6 without cytotoxicity. The protein secretion of TNF-α and IL-6 was also decreased by Rb-ME. HPLC analysis indicates that quercetin, luteolin, and kaempferol are the main active ingredients in the anti-inflammatory efficacy of Rb-ME. Rb-ME also blocked MyD88-induced NF-κB promoter activity and nuclear translocation of NF-κB subunits (p65 and p50). Moreover, Rb-ME reduced the phosphorylation of IκBα, Akt, p85, Src, and Syk, which are NF-κB upstream signaling molecules in LPS-activated RAW264.7 cells. According to the in vitro kinase assay, Rb-ME directly inhibits Syk kinase activity. The oral administration of Rb-ME alleviated inflammatory responses and the levels of p-IκBα in mice with LPS-induced peritonitis and HCl/EtOH-induced gastritis. (4) Conclusions Rb-ME has anti-inflammatory capacity by suppressing NF-κB signaling and it has been found to target Src and Syk in the NF-κB pathway. Based on this efficacy, Rb-ME could be developed as an anti-inflammatory herbal medicine.


Subject(s)
Methanol/chemistry , NF-kappa B/metabolism , Plant Extracts/pharmacology , Ranunculus/chemistry , Signal Transduction/drug effects , Syk Kinase/metabolism , src-Family Kinases/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Targeted Therapy , Nitric Oxide/biosynthesis , RAW 264.7 Cells
11.
Article in English | MEDLINE | ID: mdl-31611922

ABSTRACT

In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1ß. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/ß, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.

12.
J Ethnopharmacol ; 235: 38-46, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30710734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L., (Oleaceae) has been used widely in folk medicine in the European Mediterranean islands, India, Asia, and other parts of the world. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms of how it inhibits the inflammatory response are not fully understood. In this study, we sought to identify the anti-inflammatory mechanisms of this plant. MATERIALS AND METHODS: Using macrophages, we investigated the effects of O. europaea L. methanol extract (Oe-ME) and ethanol extract (Oe-EE) on the production of inflammatory mediator nitric oxide (NO) and prostaglandin E2 (PGE2), the expression levels of pro-inflammatory genes and intracellular inflammatory signaling activities. RESULTS: Oe-ME and Oe-EE suppressed the production of NO in lipopolysaccharide-(LPS-), Pam3CSK4-, and poly (I:C)-stimulated RAW264.7 cells; importantly, no cytotoxicity was observed. Oe-ME and Oe-EE reduced production of PGE2 without exhibiting cytotoxicity. The mRNA expression levels of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), IL-6, IL-1ß, and tumor necrosis factor (TNF)-α were down-regulated by Oe-ME and Oe-EE. Nuclear fraction and whole lysate immunoblotting analyses and overexpression experiments strongly suggested that Oe-ME decreased the translocation of p65 and p50 (nuclear factors of the NF-κB subunit) as well as Src and Syk. CONCLUSION: These results suggest that Oe-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Olea/chemistry , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Dinoprostone/metabolism , Ethanol/chemistry , HEK293 Cells , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Macrophages/drug effects , Methanol/chemistry , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Syk Kinase/metabolism , src-Family Kinases/metabolism
13.
Phytother Res ; 33(3): 676-689, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30632216

ABSTRACT

Although Morinda citrifolia (noni) has long been used in traditional medicines for human diseases, its molecular and cellular mechanism of immunostimulatory ability to improve human health under normal healthy conditions is not fully elucidated. This study aimed to investigate the in vitro and in vivo immunostimulatory activity of M. citrifolia fruit water extract treated with enzymes (Mc-eWE). In vitro studies revealed that Mc-eWE stimulated the cells by inducing nitric oxide (NO) production and the expression of inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, IL-12, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). The immunostimulatory activity was mediated by activation of NF-κB and AP-1. Ex vivo studies showed that Mc-eWE stimulated splenocytes isolated from mice by inducing NO production and expression of immunostimulatory cytokines and by downregulating the expression of the immunosuppressive cytokine IL-10 without cytotoxicity. In vivo demonstrated that Mc-eWE induced immunostimulation by modulating populations of splenic immune cells, especially by increasing the population of IFN-γ+ NK cells. Mc-eWE enhanced the expression of inflammatory genes and immunostimulatory cytokines and inhibited the expression of IL-10 in the mouse splenocytes and sera. Taken together, these results suggest that Mc-eWE plays an immunostimulatory role by activating innate and adaptive immune responses.


Subject(s)
Morinda , Plant Extracts/pharmacology , Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Animals , Cytokines/analysis , Immunity, Innate/drug effects , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , RAW 264.7 Cells
14.
Am J Chin Med ; 46(6): 1281-1296, 2018.
Article in English | MEDLINE | ID: mdl-30149753

ABSTRACT

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


Subject(s)
Anti-Inflammatory Agents , I-kappa B Kinase/metabolism , Lilium/chemistry , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , Plant Extracts/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Animals , Cell Survival/drug effects , Ethanol , HEK293 Cells , Humans , Mice , Nitric Oxide/metabolism , Plant Extracts/isolation & purification , RAW 264.7 Cells
15.
Article in English | MEDLINE | ID: mdl-29725354

ABSTRACT

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.

16.
Mediators Inflamm ; 2018: 9079527, 2018.
Article in English | MEDLINE | ID: mdl-29736153

ABSTRACT

Tabebuia avellanedae has been traditionally used as an herbal remedy to alleviate various diseases. However, the plant's pharmacological activity in allergic and inflammatory diseases and its underlying mechanism are not fully understood. Therefore, we investigated the pharmacological activity of Tabetri (T. avellanedae ethanol extract (Ta-EE)) in the pathogenesis of AD. Its underlying mechanism was explored using an AD mouse model and splenocytes isolated from this model. Ta-EE ameliorated the AD symptoms without any toxicity and protected the skin of 2,4-dinitrochlorobenzene- (DNCB-) induced AD mice from damage and epidermal thickness. Ta-EE reduced the secreted levels of allergic and proinflammatory cytokines, including histamine, immunoglobulin E (IgE), interleukin- (IL-) 4, and interferon-gamma (IFN-γ) in the DNCB-induced AD mice. Ta-EE suppressed the mRNA expression of T helper 2-specific cytokines, IL-4 and IL-5, and the proinflammatory cytokine IFN-γ in the atopic dermatitis skin lesions of AD mice. Moreover, Ta-EE suppressed the mRNA expression of IL-4, IL-5, IFN-γ, and another proinflammatory cytokine, IL-12, in the Con A-stimulated splenocytes. It also suppressed IL-12 and IFN-γ in the LPS-stimulated splenocytes. Taken together, these results suggest that Ta-EE protects against the development of AD through the inhibition of mRNA expression of T helper 2-specific cytokines and other proinflammatory cytokines.


Subject(s)
Dermatitis, Atopic/drug therapy , Plant Extracts/therapeutic use , Tabebuia/chemistry , Animals , Body Weight/drug effects , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene/toxicity , Enzyme-Linked Immunosorbent Assay , Ethanol/chemistry , Interferon-gamma/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Male , Mice , Plant Extracts/chemistry , Real-Time Polymerase Chain Reaction
17.
J Ethnopharmacol ; 220: 57-66, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29609010

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. AIM OF THE STUDY: In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. MATERIALS AND METHODS: Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. RESULTS: Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. CONCLUSION: The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties.


Subject(s)
Apoptosis/drug effects , Artemisia/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Animals , Cell Line , Cell Survival/drug effects , Ethanol/chemistry , HEK293 Cells , Humans , Medicine, Traditional , Melanins/metabolism , Mice , NIH 3T3 Cells , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Ultraviolet Rays/adverse effects
18.
Mediators Inflamm ; 2017: 3619879, 2017.
Article in English | MEDLINE | ID: mdl-29317792

ABSTRACT

Although osteoarthritis (OA), a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE)) on OA pathogenesis induced by monoiodoacetate (MIA) and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7). Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353). Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) signaling pathways in macrophages and chondrocytes.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Osteoarthritis/drug therapy , Phytotherapy , Tabebuia , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Ethanol , Humans , Inflammation Mediators/metabolism , Iodoacetic Acid/toxicity , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , NF-kappa B/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/metabolism , Plant Extracts/therapeutic use , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL