Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Plant J ; 114(2): 325-337, 2023 04.
Article in English | MEDLINE | ID: mdl-36752686

ABSTRACT

The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Germ Cells, Plant/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Pollen , Reproduction , Pollen Tube/genetics , Pollen Tube/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism
2.
Plant Reprod ; 36(3): 213-241, 2023 09.
Article in English | MEDLINE | ID: mdl-36282332

ABSTRACT

Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Reproducibility of Results , Proteomics , Pollen/genetics , Pollen/metabolism , Transcriptome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
3.
Annu Rev Plant Biol ; 72: 581-614, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33900787

ABSTRACT

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.


Subject(s)
Magnoliopsida , Pollen , Biological Evolution , Pollen Tube , Reproduction , Signal Transduction
4.
New Phytol ; 231(2): 571-585, 2021 07.
Article in English | MEDLINE | ID: mdl-33818773

ABSTRACT

Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.


Subject(s)
Plant Breeding , Thermotolerance , Heat-Shock Response , Pollen , Stress, Physiological
5.
Int J Mol Sci ; 22(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562109

ABSTRACT

ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Pollen/embryology , RNA-Binding Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Heat-Shock Response/physiology , Microscopy, Confocal , Poly(A)-Binding Proteins/metabolism , Promoter Regions, Genetic/genetics , RNA-Binding Proteins/genetics , Stress, Physiological/genetics
6.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218043

ABSTRACT

Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.


Subject(s)
Cell Differentiation , Gene Expression Profiling , Nicotiana , Plant Diseases/virology , Plant Viruses/metabolism , Pollen , Proteomics , Viroids/metabolism , Pollen/metabolism , Pollen/virology , Nicotiana/metabolism , Nicotiana/virology
7.
Int J Mol Sci ; 21(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344786

ABSTRACT

Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.


Subject(s)
Nicotiana/virology , Plant Diseases/virology , Pollen/virology , Viroids , Host-Pathogen Interactions , Nucleic Acid Conformation , Phenotype , RNA, Viral , Viral Load , Virus Replication
8.
Plant J ; 101(3): 590-603, 2020 02.
Article in English | MEDLINE | ID: mdl-31610057

ABSTRACT

Sexual reproduction in flowering plants relies on the production of haploid gametophytes that consist of germline and supporting cells. During male gametophyte development, the asymmetric mitotic division of an undetermined unicellular microspore segregates these two cell lineages. To explore genetic regulation underlying this process, we screened for pollen cell patterning mutants and isolated the heterozygous myb81-1 mutant that sheds ~50% abnormal pollen. Typically, myb81-1 microspores fail to undergo pollen mitosis I (PMI) and arrest at polarized stage with a single central vacuole. Although most myb81-1 microspores degenerate without division, a small fraction divides at later stages and fails to acquire correct cell fates. The myb81-1 allele is transmitted normally through the female, but rarely through pollen. We show that myb81-1 phenotypes result from impaired function of the GAMYB transcription factor MYB81. The MYB81 promoter shows microspore-specific activity and a MYB81-RFP fusion protein is only expressed in a narrow window prior to PMI. Ectopic expression of MYB81 driven by various promoters can severely impair vegetative or reproductive development, reflecting the strict microspore-specific control of MYB81. Our data demonstrate that MYB81 has a key role in the developmental progression of microspores, enabling formation of the two male cell lineages that are essential for sexual reproduction in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Transcription Factors, General/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Lineage , Haploidy , Mitosis , Phenotype , Pollen/genetics , Pollen/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors, General/genetics
9.
Plant Physiol ; 178(1): 258-282, 2018 09.
Article in English | MEDLINE | ID: mdl-30007911

ABSTRACT

Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.


Subject(s)
Gene Expression Profiling/methods , Pollen/genetics , Pollen/metabolism , Proteomics/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/growth & development , Pollen Tube/genetics , Pollen Tube/growth & development , Pollen Tube/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism , Proteome/genetics , Proteome/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism
10.
PLoS One ; 12(11): e0187331, 2017.
Article in English | MEDLINE | ID: mdl-29131847

ABSTRACT

Callose is a plant-specific polysaccharide (ß-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.


Subject(s)
Arabidopsis Proteins/genetics , Evolution, Molecular , Glucosyltransferases/genetics , Pollen , Genes, Plant , Phylogeny , Transcription Factors/genetics
11.
Methods Mol Biol ; 1669: 265-274, 2017.
Article in English | MEDLINE | ID: mdl-28936665

ABSTRACT

Protein phosphorylation was repeatedly shown to be the most dynamic post-translational modification mediated by a huge orchestra of protein kinases and phosphatases. Upon landing on a stigma, pollen grain dehydration and activation are accompanied by changes in protein phosphorylation together with the translation activation of stored mRNAs. To enable studies of the total phosphoproteome, it is usually necessary to apply various enrichment techniques. In this chapter, one of these protocols that worked previously well on tobacco mature pollen is presented in more detail. The method comprises of three basic steps: (1) picking flowers from the flowering tobacco plants (Nicotiana tabacum cv. Samsun), and collection of the shed pollen grains; (2) extraction of total proteins by TCA/acetone; (3) phosphoprotein enrichment by MOAC with aluminum hydroxide matrix. Taken together this protocol describes how to isolate phosphoproteins out of tobacco mature pollen.


Subject(s)
Nicotiana/metabolism , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Pollen/metabolism , Aluminum Hydroxide/chemistry , Chromatography, Affinity , Phosphoproteins/chemistry , Plant Proteins/chemistry , Protein Processing, Post-Translational
12.
Plant Reprod ; 30(1): 1-17, 2017 03.
Article in English | MEDLINE | ID: mdl-27896439

ABSTRACT

KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Pollen/metabolism , Arabidopsis/cytology , Arabidopsis/ultrastructure , DNA, Plant , Dimerization , Gene Expression Regulation, Plant , Mutagenesis, Insertional , Pollen/genetics , Pollen/growth & development , Pollen/ultrastructure , Protein Binding , Recombinant Fusion Proteins/metabolism , Trans-Activators/metabolism
13.
Nat Protoc ; 11(10): 1817-32, 2016 10.
Article in English | MEDLINE | ID: mdl-27583643

ABSTRACT

Research investigating the dynamics of male gametophyte (MG) development has proven to be challenging for the plant science community. Here we describe our protocol for separating Arabidopsis MG developmental stages, which is based on the centrifugation of pollen through a discontinuous Percoll concentration gradient. This Percoll gradient can be formed using a pipette, and it does not require a gradient maker. The purity of the isolated developing spores is as high as 70%, and in most separations it is well above 80%. Using this protocol, we can separate four different stages of pollen development-uninucleate microspore (UNM), bicellular pollen (BCP), tricellular immature pollen (TCP) and mature pollen grain (MPG). The duration of the separation procedure, excluding the cutting of flower inflorescences, is 6 h. This is reduced to 4 h when using a vacuum cleaning method to remove the MPGs before the Percoll density separation.


Subject(s)
Arabidopsis/cytology , Cell Separation/methods , Centrifugation, Density Gradient/methods , Pollen/cytology , Povidone/chemistry , Silicon Dioxide/chemistry , Cell Separation/economics , Cell Survival , Centrifugation, Density Gradient/economics , Time Factors
14.
Plant Reprod ; 29(1-2): 31-51, 2016 06.
Article in English | MEDLINE | ID: mdl-26728623

ABSTRACT

KEY MESSAGE: Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.


Subject(s)
Magnoliopsida/growth & development , Pollen/growth & development , Magnoliopsida/metabolism , Pollen/metabolism
15.
Mol Cell Proteomics ; 15(4): 1338-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26792808

ABSTRACT

Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.


Subject(s)
Nicotiana/metabolism , Phosphoproteins/metabolism , Pollen/metabolism , Proteomics/methods , Binding Sites , Gene Expression Regulation, Plant , Kinetics , Phosphoproteins/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Tandem Mass Spectrometry/methods , Nicotiana/genetics
16.
Biochem Soc Trans ; 42(2): 383-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24646248

ABSTRACT

Mature pollen represents an extremely resistant quiescent structure surrounded by a tough cell wall. After its hydration on stigma papillary cells, pollen tube growth starts rapidly. Massive metabolic changes are likely to be accompanied by changes in protein phosphorylation. Protein phosphorylation belongs among the most rapid post-translational modifications. To date, only Arabidopsis thaliana and tobacco (Nicotiana tabacum) mature pollen have been subjected to phosphoproteomic studies in order to identify the phosphoproteins present. In the present mini-review, Arabidopsis and tobacco datasets were compared with each other. The representation of the O-phosphorylated amino acids was compared between these two datasets, and the putative pollen-specific or pollen-abundant phosphopeptides were highlighted. Finally, the phosphorylation sites common for both Arabidopsis and tobacco phosphoproteins are listed as well as the phosphorylation motifs identified.


Subject(s)
Arabidopsis/metabolism , Nicotiana/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Proteome/metabolism
17.
Plant Cell Environ ; 37(3): 670-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23961845

ABSTRACT

Heat shock transcription factors (Hsfs) are involved in multiple aspects of stress response and plant growth. However, their role during male gametophyte development is largely unknown, although the generative phase is the most sensitive and critical period in the plant life cycle. Based on a wide screen of T-DNA mutant lines, we identified the atren1 mutation (restricted to nucleolus1) in early male gametophytic gene At1g77570, which has the closest homology to HSFA5 gene, the member of a heat shock transcription factor (HSF) gene family. The mutation causes multiple defects in male gametophyte development in both structure and function. Because the mutation disrupts an early acting (AtREN1) gene, these pollen phenotype abnormalities appear from bicellular pollen stage to pollen maturation. Moreover, the consequent progamic phase is compromised as well as documented by pollen germination defects and limited transmission via male gametophyte. In addition, atren1/- plants are defective in heat stress (HS) response and produce notably higher proportion of aberrant pollen grains. AtREN1 protein is targeted specifically to the nucleolus that, together with the increased size of the nucleolus in atren1 pollen, suggests that it is likely to be involved in ribosomal RNA biogenesis or other nucleolar functions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Nucleolus/metabolism , DNA-Binding Proteins/metabolism , Heat-Shock Response , Pollen/cytology , Pollen/growth & development , Alleles , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Chromosome Segregation/genetics , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Exons/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genetic Complementation Test , Germination , Green Fluorescent Proteins/metabolism , Heat-Shock Response/genetics , Mutation/genetics , Penetrance , Phenotype , Pollen/genetics , Pollen Tube/cytology , Pollen Tube/genetics , Pollen Tube/growth & development , Protein Transport
18.
Proteomics ; 12(21): 3229-50, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22976843

ABSTRACT

The transition between the quiescent mature and the metabolically active germinating pollen grain most probably involves changes in protein phosphorylation status, since phosphorylation has been implicated in the regulation of many cellular processes. Given that, only a minor proportion of cellular proteins are phosphorylated at any one time, and that phosphorylated and nonphosphorylated forms of many proteins can co-exist within a cell, the identification of phosphoproteins requires some prior enrichment from a crude protein extract. Here, we have used metal oxide/hydroxide affinity chromatography (MOAC) based on an aluminum hydroxide matrix for this purpose, and have generated a population of phosphoprotein candidates from both mature and in vitro activated tobacco pollen grains. Both electrophoretic and nonelectrophoretic methods, allied to MS, were applied to these extracts to identify a set of 139 phosphoprotein candidates. In vitro phosphorylation was also used to validate the spectrum of phosphoprotein candidates obtained by the MOAC phosphoprotein enrichment. Since only one phosphorylation site was detected by the above approach, titanium dioxide phosphopeptide enrichment of trypsinized mature pollen crude extract was performed as well. It resulted in a detection of additional 51 phosphorylation sites giving a total of 52 identified phosphosites in this set of 139 phosphoprotein candidates.


Subject(s)
Nicotiana/chemistry , Phosphoproteins/isolation & purification , Plant Proteins/analysis , Pollen/chemistry , Proteome/analysis , Amino Acid Sequence , Chromatography, Affinity/methods , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphorylation , Plant Proteins/chemistry , Proteome/chemistry , Sequence Alignment , Titanium
19.
Nat Commun ; 3: 941, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22760640

ABSTRACT

Auxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Indoleacetic Acids/metabolism , Pollen/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Pollen/metabolism
20.
BMC Plant Biol ; 12: 24, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-22340370

ABSTRACT

BACKGROUND: Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. RESULTS: Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. CONCLUSIONS: The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.


Subject(s)
Nicotiana/genetics , Pollen/genetics , Transcriptome , Arabidopsis/genetics , Cell Cycle/genetics , Gametogenesis, Plant , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Germination , Oligonucleotide Array Sequence Analysis , Plant Roots/genetics , Pollen Tube/growth & development , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL