Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138452

ABSTRACT

Repeated exposure to pathogens leads to evolutionary selection of adaptive traits. Many species transfer immunological memory to their offspring to counteract future immune challenges. Transfer factors such as those found in the colostrum are among the many mechanisms where transfer of immunologic memory from one generation to the next can be achieved for an enhanced immune response. Here, a library of 100 plants with high protein contents was screened to find plant-based proteins that behave like a transfer factor moiety to boost human immunity. Aqueous extracts from candidate plants were tested in a human peripheral blood mononuclear cell (PBMC) cytotoxicity assay using human cancerous lymphoblast cells-with K562 cells as a target and natural killer cells as an effector. Plant extracts that caused PBMCs to exhibit enhanced killing beyond the capability of the colostrum-based transfer factor were considered hits. Primary screening yielded an 11% hit rate. The protein contents of these hits were tested via a Bradford assay and Coomassie-stained SDS-PAGE, where three extracts were confirmed to have high protein contents. Plants with high protein contents underwent C18 column fractionation using methanol gradients followed by membrane ultrafiltration to isolate protein fractions with molecular weights of <3 kDa, 3-30 kDa, and >30 kDa. It was found that the 3-30 kDa and >30 kDa fractions had high activity in the PBMC cytotoxicity assay. The 3-30 kDa ultrafiltrates from the top two hits, seeds from Raphanus sativus and Brassica juncea, were then selected for protein identification by mass spectrometry. The majority of the proteins in the fractions were found to be seed storage proteins, with a low abundance of proteins involved in plant defense and stress response. These findings suggest that Raphanus sativus or Brassica juncea extracts could be considered for further characterization and immune functional exploration with a possibility of supplemental use to bolster recipients' immune response.


Subject(s)
Plant Proteins , Raphanus , Humans , Plant Proteins/pharmacology , Plant Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Transfer Factor , Plants/metabolism , Mustard Plant/metabolism
2.
J Med Food ; 26(7): 489-499, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37192488

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated and unbalanced immune response to microbial infection. Restoring immune homeostasis and infection control are considered the primary strategies to manage sepsis. Natural bioactives such as polysaccharide and polyphenols from botanicals are known for their immune modulation activity. In this study, we evaluated a standardized aloe-based composition, UP360 (constitute of polysaccharides from Aloe barbadense and Poria cocos and polyphenols from Rosemary officinalis) in lipopolysaccharide (LPS)-induced sepsis and acute inflammatory lung injury murine models. Prophylactic oral administration of UP360 for 7 days at an oral dose of 500 mg/kg improved the survival rate of mice by 62.5%, whereas all mice in the vehicle control group were deceased 82 h after LPS injection. The merit of combining these traditional herbs to yield the standardized composition UP360 was also demonstrated in this model with a mortality rate of only 30.8%, whereas 76.9%, 53.9%, and 61.5% were recorded for each individual constituents A. barbadense, P. cocos, and R. officinalis, respectively. Dose-correlated statistically significant reductions in proinflammatory cytokines and chemokine tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-3 were observed for UP360 when administered at 250 and 500 mg/kg orally for 7 days before induction of acute lung injury (ALI) model in rats. The histopathology data from lung showed statistically significant 37.9% and 37% reductions in the overall lung damage severity and pulmonary edema, respectively, for UP360-treated rats. The aloe-based composition UP360 effectively improved the survival rate of septic animals and mitigated the severity of LPS-induced ALI in vivo. These data warrant further investigation of the composition for a potential application in human as an adjunct supplement in respiratory distress and sepsis.


Subject(s)
Acute Lung Injury , Aloe , Rosmarinus , Sepsis , Wolfiporia , Humans , Mice , Rats , Animals , Lipopolysaccharides/adverse effects , Disease Models, Animal , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Lung , Cytokines , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Sepsis/drug therapy , Polyphenols/adverse effects
3.
J Med Food ; 24(9): 960-967, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33570460

ABSTRACT

Symptom-alleviating therapies for osteoarthritis (OA) management are inadequate. Long-term application of first-line treatments, such as nonsteroidal anti-inflammatory drugs, is limited due to associated side effects. We believe that a combination of traditionally used botanical extracts, which have diverse active components that target multiple inflammatory pathways, may provide a safe and efficacious alternative to address the multifactorial nature of OA. Recently, cannabidiol (CBD), the major nonpsychoactive component of the hemp plant, has gained renewed global attention for its pharmacological actions. It has shown promise in reducing pain and inflammation in preclinical models of arthritis. In this study, widely employed inflammatory and noninflammatory animal pain models, such as the hot plate test, visceral pain model (writhing test), and carrageenan-induced rat paw edema model, were utilized to evaluate the antinociceptive and anti-inflammatory activity of CBD alone and in combination with standardized bioflavonoid compositions. CBD was tested at 5, 10, 20, and 40 mg/kg orally and at 5% topically. Administered alone, CBD produced dose-correlated, statistically significant pain inhibition in all the models. Enhanced performance in pain and inflammation reduction was observed when CBD was orally administered in complex with the bioflavonoid compositions. Data from this study show that for clinically meaningful efficacy against OA, CBD may have to be delivered in higher dosage or formulated with other medicinal plants with similar activities.


Subject(s)
Cannabidiol , Analgesics , Animals , Anti-Inflammatory Agents/therapeutic use , Cannabidiol/therapeutic use , Carrageenan , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Flavonoids/therapeutic use , Inflammation/drug therapy , Plant Extracts/therapeutic use , Rats
4.
Nutrients ; 11(2)2019 Jan 26.
Article in English | MEDLINE | ID: mdl-30691120

ABSTRACT

Osteoarthritis (OA) is characterized by progressive articular cartilage degradation. Although there have been significant advances in OA management, to date, there are no effective treatment options to modify progression of the disease. We believe these unmet needs could be bridged by nutrients from natural products. Collagen induced arthritis in rats was developed and utilized to evaluate anti-inflammatory and cartilage protection activity of orally administered botanical composition, UP1306 (50 mg/kg) and Methotrexate (75 µg/kg) daily for three weeks. Objective arthritis severity markers, urine, synovial lavage, and serum were collected. At necropsy, the hock joint from each rat was collected for histopathology analysis. Urinary cartilage degradation marker (CTX-II), pro-inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and IL-6), and proteases (Matrix Metallopeptidase 3 (MMP3) and 13) were measured. Rats treated with UP1306 showed statistically significant improvements in arthritis severity markers, including uCTX-II (91.4% vs. collagen-induced arthritis (CIA)), serum IL-1ß, TNF-α, and IL-6 levels as well as synovial MMP-13. The histopathology data were also well aligned with the severity score of arthritis for both UP1306 and Methotrexate. UP1306, a botanical composition that contains a standardized blend of extracts from the heartwood of Acacia catechu and the root bark of Morus alba, could potentially be considered as a dietary supplement product for the management of arthritis.


Subject(s)
Acacia/chemistry , Arthritis, Experimental/drug therapy , Morus/chemistry , Plant Extracts , Animals , Arthritis, Experimental/pathology , Cytokines/metabolism , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley , Severity of Illness Index , Tarsal Joints/chemistry , Tarsal Joints/drug effects , Tarsal Joints/pathology
5.
Article in English | MEDLINE | ID: mdl-28904559

ABSTRACT

Although there have been augmented advances in drug discovery, current OA management is inadequate due to the lack of successful therapies proven to be effective in modifying disease progression. For some, the risk outweighs the benefit. As a result, there is a desperate need for safe and efficacious natural alternatives. Here we evaluated a composition from Morus alba, Scutellaria baicalensis, and Acacia catechu in maintaining joint structural integrity and alleviating OA associated symptoms in monoiodoacetate- (MIA-) induced rat OA disease model. Study lasted for 6 weeks. 59.6%, 64.6%, 70.7%, 69.9%, and 70.3% reductions in pain sensitivity were observed for rats treated with the composition from week 1 to week 5, respectively. Statistically significant improvements in articular cartilage matrix integrity (maintained at 57.1% versus MIA + vehicle treated rats) were shown from the modified total Mankin score for animals treated with the composition. The composition showed a statistically significant reduction in uCTX-II level (54.1% reductions). The merit of combining these botanicals was also demonstrated in their synergistic analgesic activity. Therefore, the standardized blend of Morus alba, Scutellaria baicalensis, and Acacia catechu could potentially be considered as an alternative remedy from natural sources for the management of OA and/or its associated symptoms.

6.
J Med Food ; 20(6): 568-576, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28362543

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive articular cartilage degradation manifested with significant functional impairment in consort with signs and symptoms of inflammation, stiffness, and loss of mobility. Current OA management is inadequate due to the lack of nominal therapies proven to be effective in hampering disease progression where symptomatic therapy focused intervention masks the primary etiology leading to irreversible structural damage. In this study, we describe the effect of UP1306, a composition containing a proprietary blend of two standardized extracts from the heartwood of Acacia catechu and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate (MIA)-induced rat OA disease model. Data from pain sensitivity, histopathology, and glycosaminoglycan (GAG) level were analyzed. Diclofenac at 10 mg/kg was used as a reference compound. Ex vivo proteoglycan protection model demonstrated 31.5%, 50.0%, and 54.8% inhibitions of proteoglycan degradations from UP1306 at concentrations of 50, 100, and 200 µg/mL, respectively. The merit of combining two bioflavonoid standardized extracts from A. catechu and M. alba was demonstrated in their Ex vivo synergistic proteoglycan protection activity. In the MIA in vivo OA model, administered orally at 500 mg/kg, UP1306 resulted in reductions of 17.5%, 29.0%, 34.4%, 33.5%, and 40.9% through week 1-5 in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, and minimal subchondral bone damage. Therefore, UP1306 could potentially be considered as an alternative remedy from natural sources for the management of OA and/or its associated symptoms.


Subject(s)
Acacia/chemistry , Cartilage, Articular/drug effects , Morus/chemistry , Osteoarthritis/drug therapy , Pain/drug therapy , Plant Extracts/administration & dosage , Animals , Cartilage, Articular/metabolism , Disease Models, Animal , Glycosaminoglycans/metabolism , Humans , Osteoarthritis/metabolism , Pain/metabolism , Plant Extracts/chemistry , Rabbits , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL