Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(2): 447-456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523103

ABSTRACT

We conducted a field experiment in the dry farming area in south Ningxia from 2018 to 2021, to explore the influence of tillage methods combined with mulching on soil bulk density, aggregate content, soil water storage and potato yield under different precipitation years. There were four tillage methods (15 cm depth ploughing, and 30 cm, 40 cm and 50 cm depth subsoiling) and three mulching measures (mulching with oat straw, plastic film and no mulching), with the ploughing depth of 15 cm without mulching as control. The results showed the combination of tillage and mulching effectively reduced soil bulk density in 0-60 cm layer after three years of farming compared with that prior to the experiment. Under the same tillage mode, the best effect was achieved in mulching with oat straw under different precipitation years. To be specific, the best effect in 20 cm and 40 cm soil layers was achieved in mulching with oat straw for 30 cm depth subsoiling, in 60 cm soil layer for 15 cm ploughing in wet year, and for 40 cm depth subsoiling in 20 cm, 40 cm and 60 cm soil layers in normal and dry years. In 0-20 cm soil layer, the content of >0.25 mm soil aggregate was the highest for 40 cm depth subsoiling with oat straw mul-ching in all the three years. In 20-40 cm soil layer, the content was the highest for 15 cm depth ploughing with oat straw mulching in wet year, and for 40 cm depth subsoiling with oat straw mulching in normal and dry years. In 40-60 cm soil layer, content was the highest for 15 cm depth ploughing with plastic film mulching, 30 cm depth subsoiling with plastic film mulching, and 30 cm depth subsoiling with oat straw mulching in wet, normal and dry years, which was increased by 18.8%, 27.0%, and 35.8%, respectively, compared with the control. In the key growth stage (from squaring to tuber expansion) of potatoes, soil water storage in 0-100 cm layer was optimal for 30 cm depth subsoiling with oat straw mulching in wet year and for 40 cm depth subsoiling with oat straw mulching in normal and dry years, with an increase of 19.4%, 19.5%, and 23.7%, respectively. Potato yield was the highest for 30 cm depth subsoiling with oat straw mulching in wet year and for 40 cm depth subsoiling in normal and dry years, with an increase of 84.6%, 81.7%, and 106.3%, respectively. The correlation analysis showed that improved soil physical properties played a significant role in increasing potato yield, with the most significant role of soil bulk density and soil water storage at the squaring stage. Potato yield was high at a tillage depth of 34.67-36.03 cm. We concluded that the combination of tillage method and mulching could effectively improve soil physical pro-perties and increase soil water storage in the growth stage of potatoes, thereby significantly increa-sing potato yield. Potato yield in dry farming area could be enhanced through 30 cm depth subsoiling with oat straw mulching in wet years, and 40 cm depth subsoiling with oat straw mulching in normal and dry years.


Subject(s)
Soil , Solanum tuberosum , Agriculture/methods , Farms , Water , China , Zea mays
2.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3352-3362, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36601841

ABSTRACT

To clarify the effects of tillage with mulching on potato yield and soil water and heat characteristics, we conducted a field experiment for two consecutive years in arid region of southern Ningxia. The results showed that tillage depths and mulching materials had significant impacts on soil water storage at 0-100 cm layer during the potato sowing period. The interactive effects of tillage depths and mulching materials were not significant. In 2019, the highest soil water storage was obtained in the subsoiling 30 cm with plastic film mulching, while soil water storage under the subsoiling 40 cm with straw mulch was the highest in 2020. Subsoiling 30 cm with plastic film mul-ching and subsoiling 40 cm with straw mulch significantly increased soil water storage by 16.9% and 33.4% compared with the plowing 15 cm with no mulch (CK), respectively. Tillage depths and mulching materials significantly affected soil water storage in the key growth period of potato. Among the tillage systems, the straw mulching plots and plastic film mulching plots had the strongest effect of soil water conservation. Irrespective of the mulching materials, soil water storage was significantly improved in the subsoiling 30-40 cm plots. Mulching materials and the interaction between tillage depths and mulching materials significantly affected soil effective accumulated temperature at 0-25 cm soil layer after sowing to budding. Among the tillage systems, the plastic film mulching plots significantly increased the average soil effective accumulated temperature by 9.3%, whereas the straw mulching plots significantly reduced the temperature by 18.7%, in comparison with no mulching plots. The highest soil effective accumulated temperature during the whole growth period was obtained in the subsoiling 30 cm with plastic film mulching and subsoiling 40 cm with plastic film mulching treatments in 2019 and 2020. The highest potato tuber yield and economic benefit in 2019 were found in the subsoiling 30 cm with straw mulching treatment, respectively, being 84.6% and 107.9% higher than CK. In 2020, the improvement effect of subsoiling 40 cm with straw mulch on potato tuber yield and economic benefit was the strongest, respectively, which were significantly increased by 81.7% and 105.7%, compared with CK. Tillage depths and mulching materials had significant interactive effects on the water and heat use efficiency of crop. The higher water use efficiency was obtained in the subsoiling 30-40 cm with straw mulch treatments, whereas the accumulated temperature use efficiency was increased significantly under different tillage depths with straw mulching treatments compared with CK. Soil water and effective accumulated temperature during the tuber formation stage were the main factors affecting potato total yield, with stronger effect of soil water than that of soil effective accumulated temperature. Therefore, the treatments of subsoiling 30-40 cm with straw mulch could improve soil moisture and heat condition, and realize potato yield and income increase and efficient use of water and heat resources, which have application and popularization value in dryland potato cultivation of southern Ningxia.


Subject(s)
Soil , Solanum tuberosum , Agriculture/methods , Temperature , Water/analysis , Triticum , Plastics , China , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL